亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objective: Voice disorders significantly compromise individuals' ability to speak in their daily lives. Without early diagnosis and treatment, these disorders may deteriorate drastically. Thus, automatic classification systems at home are desirable for people who are inaccessible to clinical disease assessments. However, the performance of such systems may be weakened owing to the constrained resources, and domain mismatch between the clinical data and noisy real-world data. Methods: This study develops a compact and domain-robust voice disorder classification system to identify the utterances of health, neoplasm, and benign structural diseases. Our proposed system utilizes a feature extractor model composed of factorized convolutional neural networks and subsequently deploys domain adversarial training to reconcile the domain mismatch by extracting domain-invariant features. Results: The results show that the unweighted average recall in the noisy real-world domain improved by 13% and remained at 80% in the clinic domain with only slight degradation. The domain mismatch was effectively eliminated. Moreover, the proposed system reduced the usage of both memory and computation by over 73.9%. Conclusion: By deploying factorized convolutional neural networks and domain adversarial training, domain-invariant features can be derived for voice disorder classification with limited resources. The promising results confirm that the proposed system can significantly reduce resource consumption and improve classification accuracy by considering the domain mismatch. Significance: To the best of our knowledge, this is the first study that jointly considers real-world model compression and noise-robustness issues in voice disorder classification. The proposed system is intended for application to embedded systems with limited resources.

相關內容

Correctly identifying the type of file under examination is a critical part of a forensic investigation. The file type alone suggests the embedded content, such as a picture, video, manuscript, spreadsheet, etc. In cases where a system owner might desire to keep their files inaccessible or file type concealed, we propose using an adversarially-trained machine learning neural network to determine a file's true type even if the extension or file header is obfuscated to complicate its discovery. Our semi-supervised generative adversarial network (SGAN) achieved 97.6% accuracy in classifying files across 11 different types. We also compared our network against a traditional standalone neural network and three other machine learning algorithms. The adversarially-trained network proved to be the most precise file classifier especially in scenarios with few supervised samples available. Our implementation of a file classifier using an SGAN is implemented on GitHub (//ksaintg.github.io/SGAN-File-Classier).

Social Explainable AI (SAI) is a new direction in artificial intelligence that emphasises decentralisation, transparency, social context, and focus on the human users. SAI research is still at an early stage. Consequently, it concentrates on delivering the intended functionalities, but largely ignores the possibility of unwelcome behaviours due to malicious or erroneous activity. We propose that, in order to capture the breadth of relevant aspects, one can use models and logics of strategic ability, that have been developed in multi-agent systems. Using the STV model checker, we take the first step towards the formal modelling and verification of SAI environments, in particular of their resistance to various types of attacks by compromised AI modules.

Simplicity bias is the concerning tendency of deep networks to over-depend on simple, weakly predictive features, to the exclusion of stronger, more complex features. This causes biased, incorrect model predictions in many real-world applications, exacerbated by incomplete training data containing spurious feature-label correlations. We propose a direct, interventional method for addressing simplicity bias in DNNs, which we call the feature sieve. We aim to automatically identify and suppress easily-computable spurious features in lower layers of the network, thereby allowing the higher network levels to extract and utilize richer, more meaningful representations. We provide concrete evidence of this differential suppression & enhancement of relevant features on both controlled datasets and real-world images, and report substantial gains on many real-world debiasing benchmarks (11.4% relative gain on Imagenet-A; 3.2% on BAR, etc). Crucially, we outperform many baselines that incorporate knowledge about known spurious or biased attributes, despite our method not using any such information. We believe that our feature sieve work opens up exciting new research directions in automated adversarial feature extraction & representation learning for deep networks.

Federated learning (FL) is a hot collaborative training framework via aggregating model parameters of decentralized local clients. However, most existing models unreasonably assume that data categories of FL framework are known and fxed in advance. It renders the global model to signifcantly degrade recognition performance on old categories (i.e., catastrophic forgetting), when local clients receive new categories consecutively under limited memory of storing old categories. Moreover, some new local clients that collect novel categories unseen by other clients may be introduced to the FL training irregularly, which further exacerbates the catastrophic forgetting on old categories. To tackle the above issues, we propose a novel Local-Global Anti-forgetting (LGA) model to address local and global catastrophic forgetting on old categories, which is a pioneering work to explore a global class-incremental model in the FL feld. Specifcally, considering tackling class imbalance of local client to surmount local forgetting, we develop a category-balanced gradient-adaptive compensation loss and a category gradient-induced semantic distillation loss. They can balance heterogeneous forgetting speeds of hard-to-forget and easy-to-forget old categories, while ensure intrinsic class relations consistency within different incremental tasks. Moreover, a proxy server is designed to tackle global forgetting caused by Non-IID class imbalance between different clients. It collects perturbed prototype images of new categories from local clients via prototype gradient communication under privacy preservation, and augments them via self-supervised prototype augmentation to choose the best old global model and improve local distillation gain. Experiments on representative datasets verify superior performance of our model against other comparison methods.

The problem of long-tailed recognition (LTR) has received attention in recent years due to the fundamental power-law distribution of objects in the real-world. Most recent works in LTR use softmax classifiers that have a tendency to correlate classifier norm with the amount of training data for a given class. On the other hand, Prototype classifiers do not suffer from this shortcoming and can deliver promising results simply using Nearest-Class-Mean (NCM), a special case where prototypes are empirical centroids. However, the potential of Prototype classifiers as an alternative to softmax in LTR is relatively underexplored. In this work, we propose Prototype classifiers, which jointly learn prototypes that minimize average cross-entropy loss based on probability scores from distances to prototypes. We theoretically analyze the properties of Euclidean distance based prototype classifiers that leads to stable gradient-based optimization which is robust to outliers. We further enhance Prototype classifiers by learning channel-dependent temperature parameters to enable independent distance scales along each channel. Our analysis shows that prototypes learned by Prototype classifiers are better separated than empirical centroids. Results on four long-tailed recognition benchmarks show that Prototype classifier outperforms or is comparable to the state-of-the-art methods.

The scholarly publication space is growing steadily not just in numbers but also in complexity due to collaboration between individuals from within and across fields of research. This paper presents a hierarchical classification system that automatically categorizes a scholarly publication using its abstract into a three-tier hierarchical label set of fields (discipline-field-subfield). This system enables a holistic view about the interdependence of research activities in the mentioned hierarchical tiers in terms of knowledge production through articles and impact through citations. The classification system (44 disciplines - 738 fields - 1,501 subfields) utilizes and is able to cope with 160 million abstract snippets in Microsoft Academic Graph (Version 2018-05-17) using batch training in a modularized and distributed fashion to address and assess interdisciplinarity and inter-field classifications. In addition, we have explored multi-class classifications in both the single-label and multi-label settings. In total, we have conducted 3,140 experiments, in all models (Convolutional Neural Networks, Recurrent Neural Networks, Transformers), the classification accuracy is > 90% in 77.84% and 78.83% of the single-label and multi-label classifications, respectively. We examine the advantages of our classification by its ability to better align research texts and output with disciplines, to adequately classify them in an automated way, as well as to capture the degree of interdisciplinarity in a publication which enables downstream analytics such as field interdisciplinarity. This system (a set of pretrained models) can serve as a backbone to an interactive system of indexing scientific publications.

Real-world recognition system often encounters the challenge of unseen labels. To identify such unseen labels, multi-label zero-shot learning (ML-ZSL) focuses on transferring knowledge by a pre-trained textual label embedding (e.g., GloVe). However, such methods only exploit single-modal knowledge from a language model, while ignoring the rich semantic information inherent in image-text pairs. Instead, recently developed open-vocabulary (OV) based methods succeed in exploiting such information of image-text pairs in object detection, and achieve impressive performance. Inspired by the success of OV-based methods, we propose a novel open-vocabulary framework, named multi-modal knowledge transfer (MKT), for multi-label classification. Specifically, our method exploits multi-modal knowledge of image-text pairs based on a vision and language pre-training (VLP) model. To facilitate transferring the image-text matching ability of VLP model, knowledge distillation is employed to guarantee the consistency of image and label embeddings, along with prompt tuning to further update the label embeddings. To further enable the recognition of multiple objects, a simple but effective two-stream module is developed to capture both local and global features. Extensive experimental results show that our method significantly outperforms state-of-the-art methods on public benchmark datasets. The source code is available at //github.com/sunanhe/MKT.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司