亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The question of what makes a data distribution suitable for deep learning is a fundamental open problem. Focusing on locally connected neural networks (a prevalent family of architectures that includes convolutional and recurrent neural networks as well as local self-attention models), we address this problem by adopting theoretical tools from quantum physics. Our main theoretical result states that a certain locally connected neural network is capable of accurate prediction over a data distribution if and only if the data distribution admits low quantum entanglement under certain canonical partitions of features. As a practical application of this result, we derive a preprocessing method for enhancing the suitability of a data distribution to locally connected neural networks. Experiments with widespread models over various datasets demonstrate our findings. We hope that our use of quantum entanglement will encourage further adoption of tools from physics for formally reasoning about the relation between deep learning and real-world data.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

The majorizing measure theorem of Fernique and Talagrand is a fundamental result in the theory of random processes. It relates the boundedness of random processes indexed by elements of a metric space to complexity measures arising from certain multiscale combinatorial structures, such as packing and covering trees. This paper builds on the ideas first outlined in a little-noticed preprint of Andreas Maurer to present an information-theoretic perspective on the majorizing measure theorem, according to which the boundedness of random processes is phrased in terms of the existence of efficient variable-length codes for the elements of the indexing metric space.

Recently, Man\v{c}inska and Roberson proved that two graphs $G$ and $G'$ are quantum isomorphic if and only if they admit the same number of homomorphisms from all planar graphs. We extend this result to planar #CSP with any pair of sets $\mathcal{F}$ and $\mathcal{F}'$ of real-valued, arbitrary-arity constraint functions. Graph homomorphism is the special case where each of $\mathcal{F}$ and $\mathcal{F}'$ contains a single symmetric 0-1-valued binary constraint function. Our treatment uses the framework of planar Holant problems. To prove that quantum isomorphic constraint function sets give the same value on any planar #CSP instance, we apply a novel form of holographic transformation of Valiant, using the quantum permutation matrix $\mathcal{U}$ defining the quantum isomorphism. Due to the noncommutativity of $\mathcal{U}$'s entries, it turns out that this form of holographic transformation is only applicable to planar Holant. To prove the converse, we introduce the quantum automorphism group Qut$(\mathcal{F})$ of a set of constraint functions $\mathcal{F}$, and characterize the intertwiners of Qut$(\mathcal{F})$ as the signature matrices of planar Holant$(\mathcal{F}\,|\,\mathcal{EQ})$ quantum gadgets. Then we define a new notion of (projective) connectivity for constraint functions and reduce arity while preserving the quantum automorphism group. Finally, to address the challenges posed by generalizing from 0-1 valued to real-valued constraint functions, we adapt a technique of Lov\'asz in the classical setting for isomorphisms of real-weighted graphs to the setting of quantum isomorphisms.

Defect prediction is crucial for software quality assurance and has been extensively researched over recent decades. However, prior studies rarely focus on data complexity in defect prediction tasks, and even less on understanding the difficulties of these tasks from the perspective of data complexity. In this paper, we conduct an empirical study to estimate the hardness of over 33,000 instances, employing a set of measures to characterize the inherent difficulty of instances and the characteristics of defect datasets. Our findings indicate that: (1) instance hardness in both classes displays a right-skewed distribution, with the defective class exhibiting a more scattered distribution; (2) class overlap is the primary factor influencing instance hardness and can be characterized through feature, structural, instance, and multiresolution overlap; (3) no universal preprocessing technique is applicable to all datasets, and it may not consistently reduce data complexity, fortunately, dataset complexity measures can help identify suitable techniques for specific datasets; (4) integrating data complexity information into the learning process can enhance an algorithm's learning capacity. In summary, this empirical study highlights the crucial role of data complexity in defect prediction tasks, and provides a novel perspective for advancing research in defect prediction techniques.

Convolutional neural networks (CNNs) are commonplace in high-performing solutions to many real-world problems, such as audio classification. CNNs have many parameters and filters, with some having a larger impact on the performance than others. This means that networks may contain many unnecessary filters, increasing a CNN's computation and memory requirements while providing limited performance benefits. To make CNNs more efficient, we propose a pruning framework that eliminates filters with the highest "commonality". We measure this commonality using the graph-theoretic concept of "centrality". We hypothesise that a filter with a high centrality should be eliminated as it represents commonality and can be replaced by other filters without affecting the performance of a network much. An experimental evaluation of the proposed framework is performed on acoustic scene classification and audio tagging. On the DCASE 2021 Task 1A baseline network, our proposed method reduces computations per inference by 71\% with 50\% fewer parameters at less than a two percentage point drop in accuracy compared to the original network. For large-scale CNNs such as PANNs designed for audio tagging, our method reduces 24\% computations per inference with 41\% fewer parameters at a slight improvement in performance.

The $\Sigma$-QMAC problem is introduced, involving $S$ servers, $K$ classical ($\mathbb{F}_d$) data streams, and $T$ independent quantum systems. Data stream ${\sf W}_k, k\in[K]$ is replicated at a subset of servers $\mathcal{W}(k)\subset[S]$, and quantum system $\mathcal{Q}_t, t\in[T]$ is distributed among a subset of servers $\mathcal{E}(t)\subset[S]$ such that Server $s\in\mathcal{E}(t)$ receives subsystem $\mathcal{Q}_{t,s}$ of $\mathcal{Q}_t=(\mathcal{Q}_{t,s})_{s\in\mathcal{E}(t)}$. Servers manipulate their quantum subsystems according to their data and send the subsystems to a receiver. The total download cost is $\sum_{t\in[T]}\sum_{s\in\mathcal{E}(t)}\log_d|\mathcal{Q}_{t,s}|$ qudits, where $|\mathcal{Q}|$ is the dimension of $\mathcal{Q}$. The states and measurements of $(\mathcal{Q}_t)_{t\in[T]}$ are required to be separable across $t\in[T]$ throughout, but for each $t\in[T]$, the subsystems of $\mathcal{Q}_{t}$ can be prepared initially in an arbitrary (independent of data) entangled state, manipulated arbitrarily by the respective servers, and measured jointly by the receiver. From the measurements, the receiver must recover the sum of all data streams. Rate is defined as the number of dits ($\mathbb{F}_d$ symbols) of the desired sum computed per qudit of download. The capacity of $\Sigma$-QMAC, i.e., the supremum of achievable rates is characterized for arbitrary data and entanglement distributions $\mathcal{W}, \mathcal{E}$. Coding based on the $N$-sum box abstraction is optimal in every case.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司