亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper discusses one of the most challenging practical engineering problems in speaker recognition systems - the version control of models and user profiles. A typical speaker recognition system consists of two stages: the enrollment stage, where a profile is generated from user-provided enrollment audio; and the runtime stage, where the voice identity of the runtime audio is compared against the stored profiles. As technology advances, the speaker recognition system needs to be updated for better performance. However, if the stored user profiles are not updated accordingly, version mismatch will result in meaningless recognition results. In this paper, we describe different version control strategies for speaker recognition systems that had been carefully studied at Google from years of engineering practice. These strategies are categorized into three groups according to how they are deployed in the production environment: device-side deployment, server-side deployment, and hybrid deployment. To compare different strategies with quantitative metrics under various network configurations, we present SpeakerVerSim, an easily-extensible Python-based simulation framework for different server-side deployment strategies of speaker recognition systems.

相關內容

說(shuo)(shuo)話(hua)(hua)人(ren)(ren)識(shi)別(Speaker Recognition),或者(zhe)稱為聲紋識(shi)別(Voiceprint Recognition, VPR),是根(gen)據(ju)語(yu)音中(zhong)所包含的(de)說(shuo)(shuo)話(hua)(hua)人(ren)(ren)個性(xing)信息(xi),利用計(ji)算(suan)機以及現在的(de)信息(xi)識(shi)別技術,自動鑒別說(shuo)(shuo)話(hua)(hua)人(ren)(ren)身份的(de)一種生物(wu)特征識(shi)別技術。 說(shuo)(shuo)話(hua)(hua)人(ren)(ren)識(shi)別研究的(de)目的(de)就(jiu)是從語(yu)音中(zhong)提取具有說(shuo)(shuo)話(hua)(hua)人(ren)(ren)表征性(xing)的(de)特征,建(jian)立有 效的(de)模型和系統,實現自動精準(zhun)的(de)說(shuo)(shuo)話(hua)(hua)人(ren)(ren)鑒別。

To assess the quality of a probabilistic prediction for stochastic dynamical systems (SDSs), scoring rules assign a numerical score based on the predictive distribution and the measured state. In this paper, we propose an $\epsilon$-logarithm score that generalizes the celebrated logarithm score by considering a neighborhood with radius $\epsilon$. We characterize the probabilistic predictability of an SDS by optimizing the expected score over the space of probability measures. We show how the probabilistic predictability is quantitatively determined by the neighborhood radius, the differential entropies of process noises, and the system dimension. Given any predictor, we provide approximations for the expected score with an error of scale $\mathcal{O}(\epsilon)$. In addition to the expected score, we also analyze the asymptotic behaviors of the score on individual trajectories. Specifically, we prove that the score on a trajectory can converge to the expected score when the process noises are independent and identically distributed. Moreover, the convergence speed against the trajectory length $T$ is of scale $\mathcal{O}(T^{-\frac{1}{2}})$ in the sense of probability. Finally, numerical examples are given to elaborate the results.

We study principal components regression (PCR) in an asymptotic high-dimensional regression setting, where the number of data points is proportional to the dimension. We derive exact limiting formulas for the estimation and prediction risks, which depend in a complicated manner on the eigenvalues of the population covariance, the alignment between the population PCs and the true signal, and the number of selected PCs. A key challenge in the high-dimensional setting stems from the fact that the sample covariance is an inconsistent estimate of its population counterpart, so that sample PCs may fail to fully capture potential latent low-dimensional structure in the data. We demonstrate this point through several case studies, including that of a spiked covariance model. To calculate the asymptotic prediction risk, we leverage tools from random matrix theory which to our knowledge have not seen much use to date in the statistics literature: multi-resolvent traces and their associated eigenvector overlap measures.

Probit models are useful for modeling correlated discrete responses in many disciplines, including discrete choice data in economics. However, the Gaussian latent variable feature of probit models coupled with identification constraints pose significant computational challenges for its estimation and inference, especially when the dimension of the discrete response variable is large. In this paper, we propose a computationally efficient Expectation-Maximization (EM) algorithm for estimating large probit models. Our work is distinct from existing methods in two important aspects. First, instead of simulation or sampling methods, we apply and customize expectation propagation (EP), a deterministic method originally proposed for approximate Bayesian inference, to estimate moments of the truncated multivariate normal (TMVN) in the E (expectation) step. Second, we take advantage of a symmetric identification condition to transform the constrained optimization problem in the M (maximization) step into a one-dimensional problem, which is solved efficiently using Newton's method instead of off-the-shelf solvers. Our method enables the analysis of correlated choice data in the presence of more than 100 alternatives, which is a reasonable size in modern applications, such as online shopping and booking platforms, but has been difficult in practice with probit models. We apply our probit estimation method to study ordering effects in hotel search results on Expedia.com.

This paper develops methods for proving Lyapunov stability of dynamical systems subject to disturbances with an unknown distribution. We assume only a finite set of disturbance samples is available and that the true online disturbance realization may be drawn from a different distribution than the given samples. We formulate an optimization problem to search for a sum-of-squares (SOS) Lyapunov function and introduce a distributionally robust version of the Lyapunov function derivative constraint. We show that this constraint may be reformulated as several SOS constraints, ensuring that the search for a Lyapunov function remains in the class of SOS polynomial optimization problems. For general systems, we provide a distributionally robust chance-constrained formulation for neural network Lyapunov function search. Simulations demonstrate the validity and efficiency of either formulation on non-linear uncertain dynamical systems.

Recent advancements in Large Language Models (LLMs) have significantly extended their capabilities, evolving from basic text generation to complex, human-like interactions. In light of the possibilities that LLMs could assume significant workplace responsibilities, it becomes imminently necessary to explore LLMs' capacities as professional assistants. This study focuses on the aspect of career interests by applying the Occupation Network's Interest Profiler short form to LLMs as if they were human participants and investigates their hypothetical career interests and competence, examining how these vary with language changes and model advancements. We analyzed the answers using a general linear mixed model approach and found distinct career interest inclinations among LLMs, particularly towards the social and artistic domains. Interestingly, these preferences did not align with the occupations where LLMs exhibited higher competence. This novel approach of using psychometric instruments and sophisticated statistical tools on LLMs unveils fresh perspectives on their integration into professional environments, highlighting human-like tendencies and promoting a reevaluation of LLMs' self-perception and competency alignment in the workforce.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司