亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the further use of image processing methods to select a partition. Qualitative and quantitative analyses show that the algorithm obtains high accuracy (measured with an adjusted one-sided Rand-Index) and requires low runtime and RAM. We compare the results to 6 state-of-the-art algorithms, confirming the quality of visClust by outperforming in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub.

相關內容

The approach to analysing compositional data has been dominated by the use of logratio transformations, to ensure exact subcompositional coherence and, in some situations, exact isometry as well. A problem with this approach is that data zeros, found in most applications, have to be replaced to allow the logarithmic transformation. An alternative new approach, called the `chiPower' transformation, which allows data zeros, is to combine the standardization inherent in the chi-square distance in correspondence analysis, with the essential elements of the Box-Cox power transformation. The chiPower transformation is justified because it} defines between-sample distances that tend to logratio distances for strictly positive data as the power parameter tends to zero, and are then equivalent to transforming to logratios. For data with zeros, a value of the power can be identified that brings the chiPower transformation as close as possible to a logratio transformation, without having to substitute the zeros. Especially in the area of high-dimensional data, this alternative approach can present such a high level of coherence and isometry as to be a valid approach to the analysis of compositional data. Furthermore, in a supervised learning context, if the compositional variables serve as predictors of a response in a modelling framework, for example generalized linear models, then the power can be used as a tuning parameter in optimizing the accuracy of prediction through cross-validation. The chiPower-transformed variables have a straightforward interpretation, since they are each identified with single compositional parts, not ratios.

Convex PCA, which was introduced by Bigot et al., is a dimension reduction methodology for data with values in a convex subset of a Hilbert space. This setting arises naturally in many applications, including distributional data in the Wasserstein space of an interval, and ranked compositional data under the Aitchison geometry. Our contribution in this paper is threefold. First, we present several new theoretical results including consistency as well as continuity and differentiability of the objective function in the finite dimensional case. Second, we develop a numerical implementation of finite dimensional convex PCA when the convex set is polyhedral, and show that this provides a natural approximation of Wasserstein geodesic PCA. Third, we illustrate our results with two financial applications, namely distributions of stock returns ranked by size and the capital distribution curve, both of which are of independent interest in stochastic portfolio theory.

We present the full approximation scheme constraint decomposition (FASCD) multilevel method for solving variational inequalities (VIs). FASCD is a common extension of both the full approximation scheme (FAS) multigrid technique for nonlinear partial differential equations, due to A.~Brandt, and the constraint decomposition (CD) method introduced by X.-C.~Tai for VIs arising in optimization. We extend the CD idea by exploiting the telescoping nature of certain function space subset decompositions arising from multilevel mesh hierarchies. When a reduced-space (active set) Newton method is applied as a smoother, with work proportional to the number of unknowns on a given mesh level, FASCD V-cycles exhibit nearly mesh-independent convergence rates, and full multigrid cycles are optimal solvers. The example problems include differential operators which are symmetric linear, nonsymmetric linear, and nonlinear, in unilateral and bilateral VI problems.

We present a scalable strategy for development of mesh-free hybrid neuro-symbolic partial differential equation solvers based on existing mesh-based numerical discretization methods. Particularly, this strategy can be used to efficiently train neural network surrogate models of partial differential equations by (i) leveraging the accuracy and convergence properties of advanced numerical methods, solvers, and preconditioners, as well as (ii) better scalability to higher order PDEs by strictly limiting optimization to first order automatic differentiation. The presented neural bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE system obtained on implicit Cartesian cells centered on a set of random collocation points with respect to trainable parameters of the neural network. Importantly, the conservation laws and symmetries present in the bootstrapped finite discretization equations inform the neural network about solution regularities within local neighborhoods of training points. We apply NBM to the important class of elliptic problems with jump conditions across irregular interfaces in three spatial dimensions. We show the method is convergent such that model accuracy improves by increasing number of collocation points in the domain and predonditioning the residuals. We show NBM is competitive in terms of memory and training speed with other PINN-type frameworks. The algorithms presented here are implemented using \texttt{JAX} in a software package named \texttt{JAX-DIPS} (//github.com/JAX-DIPS/JAX-DIPS), standing for differentiable interfacial PDE solver. We open sourced \texttt{JAX-DIPS} to facilitate research into use of differentiable algorithms for developing hybrid PDE solvers.

We study the online graph exploration problem proposed by Kalyanasundaram and Pruhs (1994) and prove a constant competitive ratio on minor-free graphs. This result encompasses and significantly extends the graph classes that were previously known to admit a constant competitive ratio. The main ingredient of our proof is that we find a connection between the performance of the particular exploration algorithm Blocking and the existence of light spanners. Conversely, we exploit this connection to construct light spanners of bounded genus graphs. In particular, we achieve a lightness that improves on the best known upper bound for genus g>0 and recovers the known tight bound for the planar case (g=0).

We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems for which the observational map is based on partial differential equations and, consequently, is computationally expensive to evaluate. A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design. This criterion seeks the optimal experimental design by minimizing the expected conditional variance, which is also known as the expected posterior variance. This study presents a novel likelihood-free approach to the A-optimal experimental design that does not require sampling or integrating the Bayesian posterior distribution. The expected conditional variance is obtained via the variance of the conditional expectation using the law of total variance, and we take advantage of the orthogonal projection property to approximate the conditional expectation. We derive an asymptotic error estimation for the proposed estimator of the expected conditional variance and show that the intractability of the posterior distribution does not affect the performance of our approach. We use an artificial neural network (ANN) to approximate the nonlinear conditional expectation in the implementation of our method. We then extend our approach for dealing with the case that the domain of experimental design parameters is continuous by integrating the training process of the ANN into minimizing the expected conditional variance. Through numerical experiments, we demonstrate that our method greatly reduces the number of observation model evaluations compared with widely used importance sampling-based approaches. This reduction is crucial, considering the high computational cost of the observational models. Code is available at //github.com/vinh-tr-hoang/DOEviaPACE.

Characterizing shapes of high-dimensional objects via Ricci curvatures plays a critical role in many research areas in mathematics and physics. However, even though several discretizations of Ricci curvatures for discrete combinatorial objects such as networks have been proposed and studied by mathematicians, the computational complexity aspects of these discretizations have escaped the attention of theoretical computer scientists to a large extent. In this paper, we study one such discretization, namely the Ollivier-Ricci curvature, from the perspective of efficient computation by fine-grained reductions and local query-based algorithms. Our main contributions are the following. (a) We relate our curvature computation problem to minimum weight perfect matching problem on complete bipartite graphs via fine-grained reduction. (b) We formalize the computational aspects of the curvature computation problems in suitable frameworks so that they can be studied by researchers in local algorithms. (c) We provide the first known lower and upper bounds on queries for query-based algorithms for the curvature computation problems in our local algorithms framework. En route, we also illustrate a localized version of our fine-grained reduction. We believe that our results bring forth an intriguing set of research questions, motivated both in theory and practice, regarding designing efficient algorithms for curvatures of objects.

The direct deep learning simulation for multi-scale problems remains a challenging issue. In this work, a novel higher-order multi-scale deep Ritz method (HOMS-DRM) is developed for thermal transfer equation of authentic composite materials with highly oscillatory and discontinuous coefficients. In this novel HOMS-DRM, higher-order multi-scale analysis and modeling are first employed to overcome limitations of prohibitive computation and Frequency Principle when direct deep learning simulation. Then, improved deep Ritz method are designed to high-accuracy and mesh-free simulation for macroscopic homogenized equation without multi-scale property and microscopic lower-order and higher-order cell problems with highly discontinuous coefficients. Moreover, the theoretical convergence of the proposed HOMS-DRM is rigorously demonstrated under appropriate assumptions. Finally, extensive numerical experiments are presented to show the computational accuracy of the proposed HOMS-DRM. This study offers a robust and high-accuracy multi-scale deep learning framework that enables the effective simulation and analysis of multi-scale problems of authentic composite materials.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司