亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present LinApart, a routine designed for efficiently performing the univariate partial fraction decomposition of large symbolic expressions. Our method is based on an explicit closed formula for the decomposition of rational functions with fully factorized denominators. We provide implementations in both the Wolfram Mathematica and C languages, made available at //github.com/fekeshazy/LinApart . The routine can provide very significant performance gains over available tools such as the Apart command in Mathematica.

相關內容

We present exact non-Gaussian joint likelihoods for auto- and cross-correlation functions on arbitrarily masked spherical Gaussian random fields. Our considerations apply to spin-0 as well as spin-2 fields but are demonstrated here for the spin-2 weak-lensing correlation function. We motivate that this likelihood cannot be Gaussian and show how it can nevertheless be calculated exactly for any mask geometry and on a curved sky, as well as jointly for different angular-separation bins and redshift-bin combinations. Splitting our calculation into a large- and small-scale part, we apply a computationally efficient approximation for the small scales that does not alter the overall non-Gaussian likelihood shape. To compare our exact likelihoods to correlation-function sampling distributions, we simulated a large number of weak-lensing maps, including shape noise, and find excellent agreement for one-dimensional as well as two-dimensional distributions. Furthermore, we compare the exact likelihood to the widely employed Gaussian likelihood and find significant levels of skewness at angular separations $\gtrsim 1^{\circ}$ such that the mode of the exact distributions is shifted away from the mean towards lower values of the correlation function. We find that the assumption of a Gaussian random field for the weak-lensing field is well valid at these angular separations. Considering the skewness of the non-Gaussian likelihood, we evaluate its impact on the posterior constraints on $S_8$. On a simplified weak-lensing-survey setup with an area of $10 \ 000 \ \mathrm{deg}^2$, we find that the posterior mean of $S_8$ is up to $2\%$ higher when using the non-Gaussian likelihood, a shift comparable to the precision of current stage-III surveys.

The Retinex theory models the image as a product of illumination and reflection components, which has received extensive attention and is widely used in image enhancement, segmentation and color restoration. However, it has been rarely used in additive noise removal due to the inclusion of both multiplication and addition operations in the Retinex noisy image modeling. In this paper, we propose an exponential Retinex decomposition model based on hybrid non-convex regularization and weak space oscillation-modeling for image denoising. The proposed model utilizes non-convex first-order total variation (TV) and non-convex second-order TV to regularize the reflection component and the illumination component, respectively, and employs weak $H^{-1}$ norm to measure the residual component. By utilizing different regularizers, the proposed model effectively decomposes the image into reflection, illumination, and noise components. An alternating direction multipliers method (ADMM) combined with the Majorize-Minimization (MM) algorithm is developed to solve the proposed model. Furthermore, we provide a detailed proof of the convergence property of the algorithm. Numerical experiments validate both the proposed model and algorithm. Compared with several state-of-the-art denoising models, the proposed model exhibits superior performance in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM).

The homogenization procedure developed here is conducted on a laminate with periodic space-time modulation on the fine scale: at leading order, this modulation creates convection in the low-wavelength regime if both parameters are modulated. However, if only one parameter is modulated, which is more realistic, this convective term disappears and one recovers a standard diffusion equation with effective homogeneous parameters; this does not describe the non-reciprocity and the propagation of the field observed from exact dispersion diagrams. This inconsistency is corrected here by considering second-order homogenization which results in a non-reciprocal propagation term that is proved to be non-zero for any laminate and verified via numerical simulation. The same methodology is also applied to the case when the density is modulated in the heat equation, leading therefore to a corrective advective term which cancels out non-reciprocity at the leading order but not at the second order.

A common method for estimating the Hessian operator from random samples on a low-dimensional manifold involves locally fitting a quadratic polynomial. Although widely used, it is unclear if this estimator introduces bias, especially in complex manifolds with boundaries and nonuniform sampling. Rigorous theoretical guarantees of its asymptotic behavior have been lacking. We show that, under mild conditions, this estimator asymptotically converges to the Hessian operator, with nonuniform sampling and curvature effects proving negligible, even near boundaries. Our analysis framework simplifies the intensive computations required for direct analysis.

We propose a topological mapping and localization system able to operate on real human colonoscopies, despite significant shape and illumination changes. The map is a graph where each node codes a colon location by a set of real images, while edges represent traversability between nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based local feature matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we train on real colonoscopies a deep global descriptor achieving high recall with significant changes in the scene. The addition of a Bayesian filter boosts the accuracy of long-term place recognition, enabling relocalization in a previously built map. Our experiments show that ColonMapper is able to autonomously build a map and localize against it in two important use cases: localization within the same colonoscopy or within different colonoscopies of the same patient. Code: //github.com/jmorlana/ColonMapper.

We present a new approach for nonlocal image denoising, based around the application of an unnormalized extended Gaussian ANOVA kernel within a bilevel optimization algorithm. A critical bottleneck when solving such problems for finely-resolved images is the solution of huge-scale, dense linear systems arising from the minimization of an energy term. We tackle this using a Krylov subspace approach, with a Nonequispaced Fast Fourier Transform utilized to approximate matrix-vector products in a matrix-free manner. We accelerate the algorithm using a novel change of basis approach to account for the (known) smallest eigenvalue-eigenvector pair of the matrices involved, coupled with a simple but frequently very effective diagonal preconditioning approach. We present a number of theoretical results concerning the eigenvalues and predicted convergence behavior, and a range of numerical experiments which validate our solvers and use them to tackle parameter learning problems. These demonstrate that very large problems may be effectively and rapidly denoised with very low storage requirements on a computer.

Finding the optimal design of experiments in the Bayesian setting typically requires estimation and optimization of the expected information gain functional. This functional consists of one outer and one inner integral, separated by the logarithm function applied to the inner integral. When the mathematical model of the experiment contains uncertainty about the parameters of interest and nuisance uncertainty, (i.e., uncertainty about parameters that affect the model but are not themselves of interest to the experimenter), two inner integrals must be estimated. Thus, the already considerable computational effort required to determine good approximations of the expected information gain is increased further. The Laplace approximation has been applied successfully in the context of experimental design in various ways, and we propose two novel estimators featuring the Laplace approximation to alleviate the computational burden of both inner integrals considerably. The first estimator applies Laplace's method followed by a Laplace approximation, introducing a bias. The second estimator uses two Laplace approximations as importance sampling measures for Monte Carlo approximations of the inner integrals. Both estimators use Monte Carlo approximation for the remaining outer integral estimation. We provide four numerical examples demonstrating the applicability and effectiveness of our proposed estimators.

This paper delves into the equivalence problem of Smith forms for multivariate polynomial matrices. Generally speaking, multivariate ($n \geq 2$) polynomial matrices and their Smith forms may not be equivalent. However, under certain specific condition, we derive the necessary and sufficient condition for their equivalence. Let $F\in K[x_1,\ldots,x_n]^{l\times m}$ be of rank $r$, $d_r(F)\in K[x_1]$ be the greatest common divisor of all the $r\times r$ minors of $F$, where $K$ is a field, $x_1,\ldots,x_n$ are variables and $1 \leq r \leq \min\{l,m\}$. Our key findings reveal the result: $F$ is equivalent to its Smith form if and only if all the $i\times i$ reduced minors of $F$ generate $K[x_1,\ldots,x_n]$ for $i=1,\ldots,r$.

Shape-restricted inferences have exhibited empirical success in various applications with survival data. However, certain works fall short in providing a rigorous theoretical justification and an easy-to-use variance estimator with theoretical guarantee. Motivated by Deng et al. (2023), this paper delves into an additive and shape-restricted partially linear Cox model for right-censored data, where each additive component satisfies a specific shape restriction, encompassing monotonic increasing/decreasing and convexity/concavity. We systematically investigate the consistencies and convergence rates of the shape-restricted maximum partial likelihood estimator (SMPLE) of all the underlying parameters. We further establish the aymptotic normality and semiparametric effiency of the SMPLE for the linear covariate shift. To estimate the asymptotic variance, we propose an innovative data-splitting variance estimation method that boasts exceptional versatility and broad applicability. Our simulation results and an analysis of the Rotterdam Breast Cancer dataset demonstrate that the SMPLE has comparable performance with the maximum likelihood estimator under the Cox model when the Cox model is correct, and outperforms the latter and Huang (1999)'s method when the Cox model is violated or the hazard is nonsmooth. Meanwhile, the proposed variance estimation method usually leads to reliable interval estimates based on the SMPLE and its competitors.

Recent advances in active materials and fabrication techniques have enabled the production of cyclically self-deployable metamaterials with an expanded functionality space. However, designing metamaterials that possess continuously tunable mechanical properties after self-deployment remains a challenge, notwithstanding its importance. Inspired by push puppets, we introduce an efficient design strategy to create reversibly self-deployable metamaterials with continuously tunable post-deployment stiffness and damping. Our metamaterial comprises contracting actuators threaded through beads with matching conical concavo-convex interfaces in networked chains. The slack network conforms to arbitrary shapes, but when actuated, it self-assembles into a preprogrammed configuration with beads gathered together. Further contraction of the actuators can dynamically tune the assembly's mechanical properties through the beads' particle jamming, while maintaining the overall structure with minimal change. We show that, after deployment, such metamaterials exhibit pronounced tunability in bending-dominated configurations: they can become more than 35 times stiffer and change their damping capability by over 50%. Through systematic analysis, we find that the beads'conical angle can introduce geometric nonlinearity, which has a major effect on the self-deployability and tunability of the metamaterial. Our work provides routes towards reversibly self-deployable, lightweight, and tunable metamaterials, with potential applications in soft robotics, reconfigurable architectures, and space engineering.

北京阿比特科技有限公司