亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates a joint active and passive beamforming design for distributed simultaneous transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) assisted multi-user (MU)- mutiple input single output (MISO) systems, where the energy splitting (ES) mode is considered for the STAR-RIS. We aim to design the active beamforming vectors at the base station (BS) and the passive beamforming at the STAR-RIS to maximize the user sum rate under transmitting power constraints. The formulated problem is non-convex and nontrivial to obtain the global optimum due to the coupling between active beamforming vectors and STAR-RIS phase shifts. To efficiently solve the problem, we propose a novel graph neural network (GNN)-based framework. Specifically, we first model the interactions among users and network entities are using a heterogeneous graph representation. A heterogeneous graph neural network (HGNN) implementation is then introduced to directly optimizes beamforming vectors and STAR-RIS coefficients with the system objective. Numerical results show that the proposed approach yields efficient performance compared to the previous benchmarks. Furthermore, the proposed GNN is scalable with various system configurations.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability. However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length. While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions. To address this challenge, we propose augmenting the Diffusion model with the Multi-Resolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution. Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance. Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants outperform prior diffusion models, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512. Project page: //qihao067.github.io/projects/DiMR

This paper proposes a speech synthesis system that allows users to specify and control the acoustic characteristics of a speaker by means of prompts describing the speaker's traits of synthesized speech. Unlike previous approaches, our method utilizes listener impressions to construct prompts, which are easier to collect and align more naturally with everyday descriptions of speaker traits. We adopt the Low-rank Adaptation (LoRA) technique to swiftly tailor a pre-trained language model to our needs, facilitating the extraction of speaker-related traits from the prompt text. Besides, different from other prompt-driven text-to-speech (TTS) systems, we separate the prompt-to-speaker module from the multi-speaker TTS system, enhancing system flexibility and compatibility with various pre-trained multi-speaker TTS systems. Moreover, for the prompt-to-speaker characteristic module, we also compared the discriminative method and flow-matching based generative method and we found that combining both methods can help the system simultaneously capture speaker-related information from prompts better and generate speech with higher fidelity.

This paper investigates a unified pilot signal design in an orthogonal frequency division modulation (OFDM)-based integrated sensing and communications (ISAC) system. The novel designed two-dimensional (2D) pilot signal is generated on the delay-Doppler (DD) plane for sensing, while its time-frequency (TF) plane transformation acts as the demodulation reference signal (DMRS) for the OFDM data. The well-designed pilot signal preserves orthogonality with the data in terms of resource occupancy in the TF plane and quasi-orthogonality in terms of codeword in the DD plane. Leveraging these nice properties, we are allowed to implement sensing detection in the DD plane using a simple 2D correlation, taking advantage of the favorable auto-correlation properties of the 2D pilot. In the communication part, the transformed pilot in the TF plane serves as a known DMRS for channel estimation and equalization. The 2D pilot design demonstrates good scalability and can adapt to different delay and Doppler resolution requirements without violating the OFDM data detection and can overcome the fractional Doppler with limited sensing resources. Experimental results show the effective sensing performance of the proposed pilot, with only a small fraction of power shared from the OFDM data,while maintaining satisfactory symbol detection performance in communication.

Tabular data optimization methods aim to automatically find an optimal feature transformation process that generates high-value features and improves the performance of downstream machine learning tasks. Current frameworks for automated feature transformation rely on iterative sequence generation tasks, optimizing decision strategies through performance feedback from downstream tasks. However, these approaches fail to effectively utilize historical decision-making experiences and overlook potential relationships among generated features, thus limiting the depth of knowledge extraction. Moreover, the granularity of the decision-making process lacks dynamic backtracking capabilities for individual features, leading to insufficient adaptability when encountering inefficient pathways, adversely affecting overall robustness and exploration efficiency. To address the limitations observed in current automatic feature engineering frameworks, we introduce a novel method that utilizes a feature-state transformation graph to effectively preserve the entire feature transformation journey, where each node represents a specific transformation state. During exploration, three cascading agents iteratively select nodes and idea mathematical operations to generate new transformation states. This strategy leverages the inherent properties of the graph structure, allowing for the preservation and reuse of valuable transformations. It also enables backtracking capabilities through graph pruning techniques, which can rectify inefficient transformation paths. To validate the efficacy and flexibility of our approach, we conducted comprehensive experiments and detailed case studies, demonstrating superior performance in diverse scenarios.

This paper introduces the Fair Fairness Benchmark (\textsf{FFB}), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is important for ethical compliance. However, there exist challenges in comparing and developing fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from $\mathbf{45,079}$ experiments, $\mathbf{14,428}$ GPU hours. We believe that our work will significantly facilitate the growth and development of the fairness research community.

This paper studies federated learning for nonparametric regression in the context of distributed samples across different servers, each adhering to distinct differential privacy constraints. The setting we consider is heterogeneous, encompassing both varying sample sizes and differential privacy constraints across servers. Within this framework, both global and pointwise estimation are considered, and optimal rates of convergence over the Besov spaces are established. Distributed privacy-preserving estimators are proposed and their risk properties are investigated. Matching minimax lower bounds, up to a logarithmic factor, are established for both global and pointwise estimation. Together, these findings shed light on the tradeoff between statistical accuracy and privacy preservation. In particular, we characterize the compromise not only in terms of the privacy budget but also concerning the loss incurred by distributing data within the privacy framework as a whole. This insight captures the folklore wisdom that it is easier to retain privacy in larger samples, and explores the differences between pointwise and global estimation under distributed privacy constraints.

This paper proposes a composite inner-product computation unit based on left-to-right (LR) arithmetic for the acceleration of convolution neural networks (CNN) on hardware. The efficacy of the proposed L2R-CIPU method has been shown on the VGG-16 network, and assessment is done on various performance metrics. The L2R-CIPU design achieves 1.06x to 6.22x greater performance, 4.8x to 15x more TOPS/W, and 4.51x to 53.45x higher TOPS/mm2 than prior architectures.

This paper addresses the problem of scalability for a cell-free massive MIMO (CF-mMIMO) system that performs integrated sensing and communications (ISAC). Specifically, the case where a large number of access points (APs) are deployed to perform simultaneous communication with mobile users and monitoring of the surrounding environment in the same time-frequency slot is considered, and a target-centric approach on top of the user-centric architecture used for communication services is introduced. In the paper, other practical aspects such as the fronthaul load and scanning protocol are also considered. The proposed scalable ISAC-enabled CF-mMIMO network has lower levels of system complexity, permits managing the scenario in which multiple targets are to be tracked/sensed by the APs, and achieves performance levels superior or, in some cases, close to those of the non-scalable solutions.

This paper addresses the complexities inherent in AI product prototyping, focusing on the challenges posed by the probabilistic nature of AI behavior and the limited accessibility of prototyping tools to non-experts. A Design Science Research (DSR) approach is presented which culminates in a conceptual framework aimed at improving the AI prototyping process. Through a comprehensive literature review, key challenges were identified and no-code AutoML was analyzed as a solution. The framework describes the seamless incorporation of non-expert input and evaluation during prototyping, leveraging the potential of no-code AutoML to enhance accessibility and interpretability. A hybrid approach of combining naturalistic (case study) and artificial evaluation methods (criteria-based analysis) validated the utility of our approach, highlighting its efficacy in supporting AI non-experts and streamlining decision-making and its limitations. Implications for academia and industry, emphasizing the strategic integration of no-code AutoML to enhance AI product development processes, mitigate risks, and foster innovation, are discussed.

This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.

北京阿比特科技有限公司