亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fully supervised log anomaly detection methods suffer the heavy burden of annotating massive unlabeled log data. Recently, many semi-supervised methods have been proposed to reduce annotation costs with the help of parsed templates. However, these methods consider each keyword independently, which disregards the correlation between keywords and the contextual relationships among log sequences. In this paper, we propose a novel weakly supervised log anomaly detection framework, named LogLG, to explore the semantic connections among keywords from sequences. Specifically, we design an end-to-end iterative process, where the keywords of unlabeled logs are first extracted to construct a log-event graph. Then, we build a subgraph annotator to generate pseudo labels for unlabeled log sequences. To ameliorate the annotation quality, we adopt a self-supervised task to pre-train a subgraph annotator. After that, a detection model is trained with the generated pseudo labels. Conditioned on the classification results, we re-extract the keywords from the log sequences and update the log-event graph for the next iteration. Experiments on five benchmarks validate the effectiveness of LogLG for detecting anomalies on unlabeled log data and demonstrate that LogLG, as the state-of-the-art weakly supervised method, achieves significant performance improvements compared to existing methods.

相關內容

For autonomous vehicles, driving safely is highly dependent on the capability to correctly perceive the environment in 3D space, hence the task of 3D object detection represents a fundamental aspect of perception. While 3D sensors deliver accurate metric perception, monocular approaches enjoy cost and availability advantages that are valuable in a wide range of applications. Unfortunately, training monocular methods requires a vast amount of annotated data. Interestingly, self-supervised approaches have recently been successfully applied to ease the training process and unlock access to widely available unlabelled data. While related research leverages different priors including LIDAR scans and stereo images, such priors again limit usability. Therefore, in this work, we propose a novel approach to self-supervise 3D object detection purely from RGB sequences alone, leveraging multi-view constraints and weak labels. Our experiments on KITTI 3D dataset demonstrate performance on par with state-of-the-art self-supervised methods using LIDAR scans or stereo images.

Anomaly detection is crucial to the advanced identification of product defects such as incorrect parts, misaligned components, and damages in industrial manufacturing. Due to the rare observations and unknown types of defects, anomaly detection is considered to be challenging in machine learning. To overcome this difficulty, recent approaches utilize the common visual representations from natural image datasets and distill the relevant features. However, existing approaches still have the discrepancy between the pre-trained feature and the target data, or require the input augmentation which should be carefully designed particularly for the industrial dataset. In this paper, we introduce ReConPatch, which constructs discriminative features for anomaly detection by training a linear modulation attached to a pre-trained model. ReConPatch employs contrastive representation learning to collect and distribute features in a way that produces a target-oriented and easily separable representation. To address the absence of labeled pairs for the contrastive learning, we utilize two similarity measures, pairwise and contextual similarities, between data representations as a pseudo-label. Unlike previous work, ReConPatch achieves robust anomaly detection performance without extensive input augmentation. Our method achieves the state-of-the-art anomaly detection performance (99.72%) for the widely used and challenging MVTec AD dataset.

Software systems log massive amounts of data, recording important runtime information. Such logs are used, for example, for log-based anomaly detection, which aims to automatically detect abnormal behaviors of the system under analysis by processing the information recorded in its logs. Many log-based anomaly detection techniques based on deep-learning models include a pre-processing step called log parsing. However, understanding the impact of log parsing on the accuracy of anomaly detection techniques has received surprisingly little attention so far. Investigating what are the key properties log parsing techniques should ideally have to help anomaly detection is therefore warranted. In this paper, we report on a comprehensive empirical study on the impact of log parsing on anomaly detection accuracy, using 13 log parsing techniques and five deep-learning-based anomaly detection techniques on two publicly available log datasets. Our empirical results show that, despite what is widely assumed, there is no strong correlation between log parsing accuracy and anomaly detection accuracy (regardless of the metric used for measuring log parsing accuracy). Moreover, we experimentally confirm existing theoretical results showing that it is a property that we refer to as distinguishability in log parsing results as opposed to their accuracy that plays an essential role in achieving accurate anomaly detection.

This paper proposes an unsupervised anomalous sound detection method using sound separation. In factory environments, background noise and non-objective sounds obscure desired machine sounds, making it challenging to detect anomalous sounds. Therefore, using sounds not mixed with background noise or non-purpose sounds in the detection system is desirable. We compared two versions of our proposed method, one using sound separation as a pre-processing step and the other using separation-based outlier exposure that uses the error between two separated sounds. Based on the assumption that differences in separation performance between normal and anomalous sounds affect detection results, a sound separation model specific to a particular product type was used in both versions. Experimental results indicate that the proposed method improved anomalous sound detection performance for all Machine IDs, achieving a maximum improvement of 39%.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司