Predictable adaptation of network depths can be an effective way to control inference latency and meet the resource condition of various devices. However, previous adaptive depth networks do not provide general principles and a formal explanation on why and which layers can be skipped, and, hence, their approaches are hard to be generalized and require long and complex training steps. In this paper, we present a practical approach to adaptive depth networks that is applicable to various networks with minimal training effort. In our approach, every hierarchical residual stage is divided into two sub-paths, and they are trained to acquire different properties through a simple self-distillation strategy. While the first sub-path is essential for hierarchical feature learning, the second one is trained to refine the learned features and minimize performance degradation if it is skipped. Unlike prior adaptive networks, our approach does not train every target sub-network in an iterative manner. At test time, however, we can connect these sub-paths in a combinatorial manner to select sub-networks of various accuracy-efficiency trade-offs from a single network. We provide a formal rationale for why the proposed training method can reduce overall prediction errors while minimizing the impact of skipping sub-paths. We demonstrate the generality and effectiveness of our approach with convolutional neural networks and transformers.
Conformal prediction is a statistical tool for producing prediction regions for machine learning models that are valid with high probability. A key component of conformal prediction algorithms is a \emph{non-conformity score function} that quantifies how different a model's prediction is from the unknown ground truth value. Essentially, these functions determine the shape and the size of the conformal prediction regions. While prior work has gone into creating score functions that produce multi-model prediction regions, such regions are generally too complex for use in downstream planning and control problems. We propose a method that optimizes parameterized \emph{shape template functions} over calibration data, which results in non-conformity score functions that produce prediction regions with minimum volume. Our approach results in prediction regions that are \emph{multi-modal}, so they can properly capture residuals of distributions that have multiple modes, and \emph{practical}, so each region is convex and can be easily incorporated into downstream tasks, such as a motion planner using conformal prediction regions. Our method applies to general supervised learning tasks, while we illustrate its use in time-series prediction. We provide a toolbox and present illustrative case studies of F16 fighter jets and autonomous vehicles, showing an up to $68\%$ reduction in prediction region area compared to a circular baseline region.
Recent advancements in human preference optimization, initially developed for Language Models (LMs), have shown promise for text-to-image Diffusion Models, enhancing prompt alignment, visual appeal, and user preference. Unlike LMs, Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception, leading to slower and less efficient training during the preference alignment stage. We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues. Our approach involves fine-tuning Stable Diffusion 1.5 and XL using Direct Preference Optimization (DPO), Contrastive Preference Optimization (CPO), and supervised fine-tuning (SFT) within this embedding space. This method significantly outperforms standard latent-space implementations across various metrics, including quality and computational cost. For SDXL, our approach provides 60.8\% general preference, 62.2\% visual appeal, and 52.1\% prompt following against original open-sourced SDXL-DPO on the PartiPrompts dataset, while significantly reducing compute. Our approach not only improves the efficiency and quality of human preference alignment for diffusion models but is also easily integrable with other optimization techniques. The training code and LoRA weights will be available here: //huggingface.co/alexgambashidze/SDXL\_NCP-DPO\_v0.1
As speech synthesis systems continue to make remarkable advances in recent years, the importance of robust deepfake detection systems that perform well in unseen systems has grown. In this paper, we propose a novel adaptive centroid shift (ACS) method that updates the centroid representation by continually shifting as the weighted average of bonafide representations. Our approach uses only bonafide samples to define their centroid, which can yield a specialized centroid for one-class learning. Integrating our ACS with one-class learning gathers bonafide representations into a single cluster, forming well-separated embeddings robust to unseen spoofing attacks. Our proposed method achieves an equal error rate (EER) of 2.19% on the ASVspoof 2021 deepfake dataset, outperforming all existing systems. Furthermore, the t-SNE visualization illustrates that our method effectively maps the bonafide embeddings into a single cluster and successfully disentangles the bonafide and spoof classes.
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at //github.com/zoom-wang112358/MOLLEO
Recent years have seen significant advancements in humanoid control, largely due to the availability of large-scale motion capture data and the application of reinforcement learning methodologies. However, many real-world tasks, such as moving large and heavy furniture, require multi-character collaboration. Given the scarcity of data on multi-character collaboration and the efficiency challenges associated with multi-agent learning, these tasks cannot be straightforwardly addressed using training paradigms designed for single-agent scenarios. In this paper, we introduce Cooperative Human-Object Interaction (CooHOI), a novel framework that addresses multi-character objects transporting through a two-phase learning paradigm: individual skill acquisition and subsequent transfer. Initially, a single agent learns to perform tasks using the Adversarial Motion Priors (AMP) framework. Following this, the agent learns to collaborate with others by considering the shared dynamics of the manipulated object during parallel training using Multi Agent Proximal Policy Optimization (MAPPO). When one agent interacts with the object, resulting in specific object dynamics changes, the other agents learn to respond appropriately, thereby achieving implicit communication and coordination between teammates. Unlike previous approaches that relied on tracking-based methods for multi-character HOI, CooHOI is inherently efficient, does not depend on motion capture data of multi-character interactions, and can be seamlessly extended to include more participants and a wide range of object types
The distributed inference paradigm enables the computation workload to be distributed across multiple devices, facilitating the implementations of deep learning based intelligent services on extremely resource-constrained Internet of Things (IoT) scenarios. Yet it raises great challenges to perform complicated inference tasks relying on a cluster of IoT devices that are heterogeneous in their computing/communication capacity and prone to crash or timeout failures. In this paper, we present RoCoIn, a robust cooperative inference mechanism for locally distributed execution of deep neural network-based inference tasks over heterogeneous edge devices. It creates a set of independent and compact student models that are learned from a large model using knowledge distillation for distributed deployment. In particular, the devices are strategically grouped to redundantly deploy and execute the same student model such that the inference process is resilient to any local failures, while a joint knowledge partition and student model assignment scheme are designed to minimize the response latency of the distributed inference system in the presence of devices with diverse capacities. Extensive simulations are conducted to corroborate the superior performance of our RoCoIn for distributed inference compared to several baselines, and the results demonstrate its efficacy in timely inference and failure resiliency.
Ultrasonography has revolutionized non-invasive diagnostic methodologies, significantly enhancing patient outcomes across various medical domains. Despite its advancements, integrating ultrasound technology with robotic systems for automated scans presents challenges, including limited command understanding and dynamic execution capabilities. To address these challenges, this paper introduces a novel Ultrasound Embodied Intelligence system that synergistically combines ultrasound robots with large language models (LLMs) and domain-specific knowledge augmentation, enhancing ultrasound robots' intelligence and operational efficiency. Our approach employs a dual strategy: firstly, integrating LLMs with ultrasound robots to interpret doctors' verbal instructions into precise motion planning through a comprehensive understanding of ultrasound domain knowledge, including APIs and operational manuals; secondly, incorporating a dynamic execution mechanism, allowing for real-time adjustments to scanning plans based on patient movements or procedural errors. We demonstrate the effectiveness of our system through extensive experiments, including ablation studies and comparisons across various models, showcasing significant improvements in executing medical procedures from verbal commands. Our findings suggest that the proposed system improves the efficiency and quality of ultrasound scans and paves the way for further advancements in autonomous medical scanning technologies, with the potential to transform non-invasive diagnostics and streamline medical workflows.
Deep nonparametric regression, characterized by the utilization of deep neural networks to learn target functions, has emerged as a focus of research attention in recent years. Despite considerable progress in understanding convergence rates, the absence of asymptotic properties hinders rigorous statistical inference. To address this gap, we propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation, leveraging the conditional diffusion model. Theoretically, we develop an end-to-end convergence rate for the conditional diffusion model and establish the asymptotic normality of the generated samples. Consequently, we are equipped to construct confidence regions, facilitating robust statistical inference. Furthermore, through numerical experiments, we empirically validate the efficacy of our proposed methodology.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.