亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we explore a scalable way for building a general representation model toward unlimited modalities. We release ONE-PEACE, a highly extensible model with 4B parameters that can seamlessly align and integrate representations across vision, audio, and language modalities. The architecture of ONE-PEACE comprises modality adapters, shared self-attention layers, and modality FFNs. This design allows for the easy extension of new modalities by adding adapters and FFNs, while also enabling multi-modal fusion through self-attention layers. To pretrain ONE-PEACE, we develop two modality-agnostic pretraining tasks, cross-modal aligning contrast and intra-modal denoising contrast, which align the semantic space of different modalities and capture fine-grained details within modalities concurrently. With the scaling-friendly architecture and pretraining tasks, ONE-PEACE has the potential to expand to unlimited modalities. Without using any vision or language pretrained model for initialization, ONE-PEACE achieves leading results on a wide range of uni-modal and multi-modal tasks, including image classification (ImageNet), semantic segmentation (ADE20K), audio-text retrieval (AudioCaps, Clotho), audio classification (ESC-50, FSD50K, VGGSound), audio question answering (AVQA), image-text retrieval (MSCOCO, Flickr30K), and visual grounding (RefCOCO/+/g). Code is available at //github.com/OFA-Sys/ONE-PEACE.

相關內容

While originally designed for image generation, diffusion models have recently shown to provide excellent pretrained feature representations for semantic segmentation. Intrigued by this result, we set out to explore how well diffusion-pretrained representations generalize to new domains, a crucial ability for any representation. We find that diffusion-pretraining achieves extraordinary domain generalization results for semantic segmentation, outperforming both supervised and self-supervised backbone networks. Motivated by this, we investigate how to utilize the model's unique ability of taking an input prompt, in order to further enhance its cross-domain performance. We introduce a scene prompt and a prompt randomization strategy to help further disentangle the domain-invariant information when training the segmentation head. Moreover, we propose a simple but highly effective approach for test-time domain adaptation, based on learning a scene prompt on the target domain in an unsupervised manner. Extensive experiments conducted on four synthetic-to-real and clear-to-adverse weather benchmarks demonstrate the effectiveness of our approaches. Without resorting to any complex techniques, such as image translation, augmentation, or rare-class sampling, we set a new state-of-the-art on all benchmarks. Our implementation will be publicly available at \url{//github.com/ETHRuiGong/PTDiffSeg}.

Manually annotating fine-grained slot-value labels for task-oriented dialogue (ToD) systems is an expensive and time-consuming endeavour. This motivates research into slot-filling methods that operate with limited amounts of labelled data. Moreover, the majority of current work on ToD is based solely on text as the input modality, neglecting the additional challenges of imperfect automatic speech recognition (ASR) when working with spoken language. In this work, we propose a Knowledge-Aware Audio-Grounded generative slot-filling framework, termed KA2G, that focuses on few-shot and zero-shot slot filling for ToD with speech input. KA2G achieves robust and data-efficient slot filling for speech-based ToD by 1) framing it as a text generation task, 2) grounding text generation additionally in the audio modality, and 3) conditioning on available external knowledge (e.g. a predefined list of possible slot values). We show that combining both modalities within the KA2G framework improves the robustness against ASR errors. Further, the knowledge-aware slot-value generator in KA2G, implemented via a pointer generator mechanism, particularly benefits few-shot and zero-shot learning. Experiments, conducted on the standard speech-based single-turn SLURP dataset and a multi-turn dataset extracted from a commercial ToD system, display strong and consistent gains over prior work, especially in few-shot and zero-shot setups.

The biomedical field relies heavily on concept linking in various areas such as literature mining, graph alignment, information retrieval, question-answering, data, and knowledge integration. Although large language models (LLMs) have made significant strides in many natural language processing tasks, their effectiveness in biomedical concept mapping is yet to be fully explored. This research investigates a method that exploits the in-context learning (ICL) capabilities of large models for biomedical concept linking. The proposed approach adopts a two-stage retrieve-and-rank framework. Initially, biomedical concepts are embedded using language models, and then embedding similarity is utilized to retrieve the top candidates. These candidates' contextual information is subsequently incorporated into the prompt and processed by a large language model to re-rank the concepts. This approach achieved an accuracy of 90.% in BC5CDR disease entity normalization and 94.7% in chemical entity normalization, exhibiting a competitive performance relative to supervised learning methods. Further, it showed a significant improvement, with an over 20-point absolute increase in F1 score on an oncology matching dataset. Extensive qualitative assessments were conducted, and the benefits and potential shortcomings of using large language models within the biomedical domain were discussed. were discussed.

The growth of pending legal cases in populous countries, such as India, has become a major issue. Developing effective techniques to process and understand legal documents is extremely useful in resolving this problem. In this paper, we present our systems for SemEval-2023 Task 6: understanding legal texts (Modi et al., 2023). Specifically, we first develop the Legal-BERT-HSLN model that considers the comprehensive context information in both intra- and inter-sentence levels to predict rhetorical roles (subtask A) and then train a Legal-LUKE model, which is legal-contextualized and entity-aware, to recognize legal entities (subtask B). Our evaluations demonstrate that our designed models are more accurate than baselines, e.g., with an up to 15.0% better F1 score in subtask B. We achieved notable performance in the task leaderboard, e.g., 0.834 micro F1 score, and ranked No.5 out of 27 teams in subtask A.

Current Vision and Language Models (VLMs) demonstrate strong performance across various vision-language tasks, yet they struggle with fine-grained understanding. This issue stems from weak image-caption alignment in pretraining datasets and a simplified contrastive objective that fails to distinguish nuanced grounding elements such as relations, actions, and attributes. As a result, the models tend to learn bag-of-words representations. To mitigate these challenges, we introduce an intra-modal contrastive loss and a unique cross-modal rank loss with an adaptive threshold that serves as curriculum learning, utilizing our automatically generated hard negatives to augment the model's capacity. Our strategy, which does not necessitate additional annotations or parameters, can be incorporated into any VLM trained with an image-text contrastive loss. Upon application to CLIP, our method leads to significant improvements on four fine-grained benchmarks, and it also enhances the performance of X-VLM, which is the state-of-art moodel on fine-grained reasoning.

Imbalanced data poses a significant challenge in classification as model performance is affected by insufficient learning from minority classes. Balancing methods are often used to address this problem. However, such techniques can lead to problems such as overfitting or loss of information. This study addresses a more challenging aspect of balancing methods - their impact on model behavior. To capture these changes, Explainable Artificial Intelligence tools are used to compare models trained on datasets before and after balancing. In addition to the variable importance method, this study uses the partial dependence profile and accumulated local effects techniques. Real and simulated datasets are tested, and an open-source Python package edgaro is developed to facilitate this analysis. The results obtained show significant changes in model behavior due to balancing methods, which can lead to biased models toward a balanced distribution. These findings confirm that balancing analysis should go beyond model performance comparisons to achieve higher reliability of machine learning models. Therefore, we propose a new method performance gain plot for informed data balancing strategy to make an optimal selection of balancing method by analyzing the measure of change in model behavior versus performance gain.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: //github.com/j-min/VL-T5

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

北京阿比特科技有限公司