Algorithmic risk assessment instruments (RAIs) increasingly inform decision-making in criminal justice. RAIs largely rely on arrest records as a proxy for underlying crime. Problematically, the extent to which arrests reflect overall offending can vary with the person's characteristics. We examine how the disconnect between crime and arrest rates impacts RAIs and their evaluation. Our main contribution is a method for quantifying this bias via estimation of the amount of unobserved offenses associated with particular demographics. These unobserved offenses are then used to augment real-world arrest records to create part real, part synthetic crime records. Using this data, we estimate that four currently deployed RAIs assign 0.5--2.8 percentage points higher risk scores to Black individuals than to White individuals with a similar \emph{arrest} record, but the gap grows to 4.5--11.0 percentage points when we match on the semi-synthetic \emph{crime} record. We conclude by discussing the potential risks around the use of RAIs, highlighting how they may exacerbate existing inequalities if the underlying disparities of the criminal justice system are not taken into account. In light of our findings, we provide recommendations to improve the development and evaluation of such tools.
Due to the nature of pure-tone audiometry test, hearing loss data often has a complicated correlation structure. Generalized estimating equation (GEE) is commonly used to investigate the association between exposures and hearing loss, because it is robust to misspecification of the correlation matrix. However, this robustness typically entails a moderate loss of estimation efficiency in finite samples. This paper proposes to model the correlation coefficients and use second-order generalized estimating equations to estimate the correlation parameters. In simulation studies, we assessed the finite sample performance of our proposed method and compared it with other methods, such as GEE with independent, exchangeable and unstructured correlation structures. Our method achieves an efficiency gain which is larger for the coefficients of the covariates corresponding to the within-cluster variation (e.g., ear-level covariates) than the coefficients of cluster-level covariates. The efficiency gain is also more pronounced when the within-cluster correlations are moderate to strong, or when comparing to GEE with an unstructured correlation structure. As a real-world example, we applied the proposed method to data from the Audiology Assessment Arm of the Conservation of Hearing Study, and studied the association between a dietary adherence score and hearing loss.
Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed with the assumption that agents' policies are based on accurate state information. However, policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial state perturbation attacks. In this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to investigate the fundamental properties of MARL under state uncertainties. Our analysis shows that the commonly used solution concepts of optimal agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this difficulty, we consider a new solution concept called robust agent policy, where agents aim to maximize the worst-case expected state value. We prove the existence of robust agent policy for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under state uncertainties. Our experiments demonstrate that our algorithm outperforms existing methods when faced with state perturbations and greatly improves the robustness of MARL policies. Our code is public on //songyanghan.github.io/what_is_solution/.
Conventional Congestion Control (CC) algorithms,such as TCP Cubic, struggle in tactical environments as they misinterpret packet loss and fluctuating network performance as congestion symptoms. Recent efforts, including our own MARLIN, have explored the use of Reinforcement Learning (RL) for CC, but they often fall short of generalization, particularly in competitive, unstable, and unforeseen scenarios. To address these challenges, this paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network. We also introduce refined RL formulation and performance evaluation methods tailored for agents operating in such intricate scenarios. We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link. Finally, we compared its performance in file transfer tasks against Transmission Control Protocol (TCP) Cubic and the default strategy implemented in the Mockets tactical communication middleware. The results demonstrate that the MARLIN RL agent outperforms both TCP and Mockets under different perspectives and highlight the effectiveness of specialized RL solutions in optimizing CC for tactical network environments.
We describe the \proglang{R} package \pkg{glmmrBase} and an extension \pkg{glmmrOptim}. \pkg{glmmrBase} provides a flexible approach to specifying, fitting, and analysing generalised linear mixed models. We use an object-orientated class system within \proglang{R} to provide methods for a wide range of covariance and mean functions, including specification of non-linear functions of data and parameters, relevant to multiple applications including cluster randomised trials, cohort studies, spatial and spatio-temporal modelling, and split-plot designs. The class generates relevant matrices and statistics and a wide range of methods including full likelihood estimation of generalised linear mixed models using Markov Chain Monte Carlo Maximum Likelihood, Laplace approximation, power calculation, and access to relevant calculations. The class also includes Hamiltonian Monte Carlo simulation of random effects, sparse matrix methods, and other functionality to support efficient estimation. The \pkg{glmmrOptim} package implements a set of algorithms to identify c-optimal experimental designs where observations are correlated and can be specified using the generalised linear mixed model classes. Several examples and comparisons to existing packages are provided to illustrate use of the packages.
This paper presents new methods for analyzing and evaluating generalized plans that can solve broad classes of related planning problems. Although synthesis and learning of generalized plans has been a longstanding goal in AI, it remains challenging due to fundamental gaps in methods for analyzing the scope and utility of a given generalized plan. This paper addresses these gaps by developing a new conceptual framework along with proof techniques and algorithmic processes for assessing termination and goal-reachability related properties of generalized plans. We build upon classic results from graph theory to decompose generalized plans into smaller components that are then used to derive hierarchical termination arguments. These methods can be used to determine the utility of a given generalized plan, as well as to guide the synthesis and learning processes for generalized plans. We present theoretical as well as empirical results illustrating the scope of this new approach. Our analysis shows that this approach significantly extends the class of generalized plans that can be assessed automatically, thereby reducing barriers in the synthesis and learning of reliable generalized plans.
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.