Distributed computing is critically important for modern statistical analysis. Herein, we develop a distributed quasi-Newton (DQN) framework with excellent statistical, computation, and communication efficiency. In the DQN method, no Hessian matrix inversion or communication is needed. This considerably reduces the computation and communication complexity of the proposed method. Notably, related existing methods only analyze numerical convergence and require a diverging number of iterations to converge. However, we investigate the statistical properties of the DQN method and theoretically demonstrate that the resulting estimator is statistically efficient over a small number of iterations under mild conditions. Extensive numerical analyses demonstrate the finite sample performance.
Palmprint as biometrics has gained increasing attention recently due to its discriminative ability and robustness. However, existing methods mainly improve palmprint verification within one spectrum, which is challenging to verify across different spectrums. Additionally, in distributed server-client-based deployment, palmprint verification systems predominantly necessitate clients to transmit private data for model training on the centralized server, thereby engendering privacy apprehensions. To alleviate the above issues, in this paper, we propose a physics-driven spectrum-consistent federated learning method for palmprint verification, dubbed as PSFed-Palm. PSFed-Palm draws upon the inherent physical properties of distinct wavelength spectrums, wherein images acquired under similar wavelengths display heightened resemblances. Our approach first partitions clients into short- and long-spectrum groups according to the wavelength range of their local spectrum images. Subsequently, we introduce anchor models for short- and long-spectrum, which constrain the optimization directions of local models associated with long- and short-spectrum images. Specifically, a spectrum-consistent loss that enforces the model parameters and feature representation to align with their corresponding anchor models is designed. Finally, we impose constraints on the local models to ensure their consistency with the global model, effectively preventing model drift. This measure guarantees spectrum consistency while protecting data privacy, as there is no need to share local data. Extensive experiments are conducted to validate the efficacy of our proposed PSFed-Palm approach. The proposed PSFed-Palm demonstrates compelling performance despite only a limited number of training data. The codes will be released at //github.com/Zi-YuanYang/PSFed-Palm.
Noise is a part of data whether the data is from measurement, experiment or ... A few techniques are suggested for noise reduction to improve the data quality in recent years some of which are based on wavelet, orthogonalization and neural networks. The computational cost of existing methods are more than expected and that's why their application in some cases is not beneficial. In this paper, we suggest a low cost techniques based on special linear algebra structures (tridiagonal systems) to improve the signal quality. In this method, we suggest a tridiagonal model for the noise around the most noisy elements. To update the predicted noise, the algorithm is equipped with a learning/feedback approach. The details are described below and based on presented numerical results this algorithm is successful in computing the noise with lower MSE (mean squared error) in computation time specially when the data size is lower than 5000. Our algorithm is used for low-range noise while for high-range noise it is sufficient to use the presented algorithm in hybrid with moving average. The algorithm is implemented in MATLAB 2019b on a computer with Windows 11 having 8GB RAM. It is then tested over many randomly generated experiments. The numerical results confirm the efficiency of presented algorithm in most cases in comparison with existing methods.
Model selection is an integral problem of model based optimization techniques such as Bayesian optimization (BO). Current approaches often treat model selection as an estimation problem, to be periodically updated with observations coming from the optimization iterations. In this paper, we propose an alternative way to achieve both efficiently. Specifically, we propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster. The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured by a score function and fed back, capturing how well the model helped convergence in the function space. The score function is derived in such a way that it neutralizes the effect of the moving nature of the BO in the function space, thus keeping the model selection problem stationary. This back and forth leads to quick convergence for both model selection and BO in the function space. In addition to improved sample efficiency, the framework outputs information about the black-box function. Convergence is proved, and experimental results show significant improvement compared to standard BO.
Many efforts have been made to construct dialog systems for different types of conversations, such as task-oriented dialog (TOD) and open-domain dialog (ODD). To better mimic human-level conversations that usually fuse various dialog modes, it is essential to build a system that can effectively handle both TOD and ODD and access different knowledge sources. To address the lack of available data for the fused task, we propose a framework for automatically generating dialogues that combine knowledge-grounded ODDs and TODs in various settings. Additionally, we introduce a unified model PivotBot that is capable of appropriately adopting TOD and ODD modes and accessing different knowledge sources in order to effectively tackle the fused task. Evaluation results demonstrate the superior ability of the proposed model to switch seamlessly between TOD and ODD tasks.
Audio-visual person recognition (AVPR) has received extensive attention. However, most datasets used for AVPR research so far are collected in constrained environments, and thus cannot reflect the true performance of AVPR systems in real-world scenarios. To meet the request for research on AVPR in unconstrained conditions, this paper presents a multi-genre AVPR dataset collected `in the wild', named CN-Celeb-AV. This dataset contains more than 419k video segments from 1,136 persons from public media. In particular, we put more emphasis on two real-world complexities: (1) data in multiple genres; (2) segments with partial information. A comprehensive study was conducted to compare CN-Celeb-AV with two popular public AVPR benchmark datasets, and the results demonstrated that CN-Celeb-AV is more in line with real-world scenarios and can be regarded as a new benchmark dataset for AVPR research. The dataset also involves a development set that can be used to boost the performance of AVPR systems in real-life situations. The dataset is free for researchers and can be downloaded from //cnceleb.org/.
The continuous dynamics of natural systems has been effectively modelled using Neural Ordinary Differential Equations (Neural ODEs). However, for accurate and meaningful predictions, it is crucial that the models follow the underlying rules or laws that govern these systems. In this work, we propose a self-adaptive penalty algorithm for Neural ODEs to enable modelling of constrained natural systems. The proposed self-adaptive penalty function can dynamically adjust the penalty parameters. The explicit introduction of prior knowledge helps to increase the interpretability of Neural ODE -based models. We validate the proposed approach by modelling three natural systems with prior knowledge constraints: population growth, chemical reaction evolution, and damped harmonic oscillator motion. The numerical experiments and a comparison with other penalty Neural ODE approaches and \emph{vanilla} Neural ODE, demonstrate the effectiveness of the proposed self-adaptive penalty algorithm for Neural ODEs in modelling constrained natural systems. Moreover, the self-adaptive penalty approach provides more accurate and robust models with reliable and meaningful predictions.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.