亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Hopfield network model and its generalizations were introduced as a model of associative, or content-addressable, memory. They were widely investigated both as an unsupervised learning method in artificial intelligence and as a model of biological neural dynamics in computational neuroscience. The complexity features of biological neural networks have attracted the scientific community's interest for the last two decades. More recently, concepts and tools borrowed from complex network theory were applied to artificial neural networks and learning, thus focusing on the topological aspects. However, the temporal structure is also a crucial property displayed by biological neural networks and investigated in the framework of systems displaying complex intermittency. The Intermittency-Driven Complexity (IDC) approach indeed focuses on the metastability of self-organized states, whose signature is a power-decay in the inter-event time distribution or a scaling behaviour in the related event-driven diffusion processes. The investigation of IDC in neural dynamics and its relationship with network topology is still in its early stages. In this work, we present the preliminary results of an IDC analysis carried out on a bio-inspired Hopfield-type neural network comparing two different connectivities, i.e., scale-free vs. random network topology. We found that random networks can trigger complexity features similar to that of scale-free networks, even if with some differences and for different parameter values, in particular for different noise levels

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議。 Publisher:IFIP。 SIT:

Context: Software development is a complex socio-technical process requiring a deep understanding of various aspects. In order to support practitioners in understanding such a complex activity, repository process metrics, like number of pull requests and issues, emerged as crucial for evaluating CI/CD workflows and guiding informed decision-making. The research community proposed different ways to visualize these metrics to increase their impact on developers' process comprehension: VR is a promising one. Nevertheless, despite such promising results, the role of VR, especially in educational settings, has received limited research attention. Objective: This study aims to address this gap by exploring how VR-based repository metrics visualization can support the teaching of process comprehension. Method: The registered report proposes the execution of a controlled experiment where VR and non-VR approaches will be compared, with the final aim to assess whether repository metrics in VR's impact on learning experience and software process comprehension. By immersing students in an intuitive environment, this research hypothesizes that VR can foster essential analytical skills, thus preparing software engineering students more effectively for industry requirements and equipping them to navigate complex software development tasks with enhanced comprehension and critical thinking abilities.

E-learning platforms that personalise content selection with AI are often criticised for lacking transparency and controllability. Researchers have therefore proposed solutions such as open learner models and letting learners select from ranked recommendations, which engage learners before or after the AI-supported selection process. However, little research has explored how learners - especially adolescents - could engage during such AI-supported decision-making. To address this open challenge, we iteratively designed and implemented a control mechanism that enables learners to steer the difficulty of AI-compiled exercise series before practice, while interactively analysing their control's impact in a 'what-if' visualisation. We evaluated our prototypes through four qualitative studies involving adolescents, teachers, EdTech professionals, and pedagogical experts, focusing on different types of visual explanations for recommendations. Our findings suggest that 'why' explanations do not always meet the explainability needs of young learners but can benefit teachers. Additionally, 'what-if' explanations were well-received for their potential to boost motivation. Overall, our work illustrates how combining learner control and visual explanations can be operationalised on e-learning platforms for adolescents. Future research can build upon our designs for 'why' and 'what-if' explanations and verify our preliminary findings.

The biological brain has inspired multiple advances in machine learning. However, most state-of-the-art models in computer vision do not operate like the human brain, simply because they are not capable of changing or improving their decisions/outputs based on a deeper analysis. The brain is recurrent, while these models are not. It is therefore relevant to explore what would be the impact of adding recurrent mechanisms to existing state-of-the-art architectures and to answer the question of whether recurrency can improve existing architectures. To this end, we build on a feed-forward segmentation model and explore multiple types of recurrency for image segmentation. We explore self-organizing, relational, and memory retrieval types of recurrency that minimize a specific energy function. In our experiments, we tested these models on artificial and medical imaging data, while analyzing the impact of high levels of noise and few-shot learning settings. Our results do not validate our initial hypothesis that recurrent models should perform better in these settings, suggesting that these recurrent architectures, by themselves, are not sufficient to surpass state-of-the-art feed-forward versions and that additional work needs to be done on the topic.

Natural language processing (NLP) has seen remarkable advancements with the development of large language models (LLMs). Despite these advancements, LLMs often produce socially biased outputs. Recent studies have mainly addressed this problem by prompting LLMs to behave ethically, but this approach results in unacceptable performance degradation. In this paper, we propose a multi-objective approach within a multi-agent framework (MOMA) to mitigate social bias in LLMs without significantly compromising their performance. The key idea of MOMA involves deploying multiple agents to perform causal interventions on bias-related contents of the input questions, breaking the shortcut connection between these contents and the corresponding answers. Unlike traditional debiasing techniques leading to performance degradation, MOMA substantially reduces bias while maintaining accuracy in downstream tasks. Our experiments conducted on two datasets and two models demonstrate that MOMA reduces bias scores by up to 87.7%, with only a marginal performance degradation of up to 6.8% in the BBQ dataset. Additionally, it significantly enhances the multi-objective metric icat in the StereoSet dataset by up to 58.1%. Code will be made available at //github.com/Cortantse/MOMA.

Time of Flight ToF cameras renowned for their ability to capture realtime 3D information have become indispensable for agile mobile robotics These cameras utilize light signals to accurately measure distances enabling robots to navigate complex environments with precision Innovative depth cameras characterized by their compact size and lightweight design such as the recently released PMD Flexx2 are particularly suited for mobile robots Capable of achieving high frame rates while capturing depth information this innovative sensor is suitable for tasks such as robot navigation and terrain mapping Operating on the ToF measurement principle the sensor offers multiple benefits over classic stereobased depth cameras However the depth images produced by the camera are subject to noise from multiple sources complicating their simulation This paper proposes an accurate quantification and modeling of the nonsystematic noise of the PMD Flexx2 We propose models for both axial and lateral noise across various camera modes assuming Gaussian distributions Axial noise modeled as a function of distance and incidence angle demonstrated a low average KullbackLeibler KL divergence of 0015 nats reflecting precise noise characterization Lateral noise deviating from a Gaussian distribution was modeled conservatively yielding a satisfactory KL divergence of 0868 nats These results validate our noise models crucial for accurately simulating sensor behavior in virtual environments and reducing the simtoreal gap in learningbased control approaches

Large language models (LLMs) have significantly improved their ability to perform tasks in the field of code generation. However, there is still a gap between LLMs being capable coders and being top-tier software engineers. Based on the observation that top-level software engineers often ask clarifying questions to reduce ambiguity in both requirements and coding solutions, we argue that the same should be applied to LLMs for code generation tasks. In this work, we conducted an empirical study on the benchmark and analysis of the communication skills of LLMs for code generation. We define communication skills of LLMs as ``being able to ask clarifying questions when the description of the code generation problem has issues''. We created a new benchmark, HumanEvalComm, by modifying problem descriptions according to three issues: inconsistency, ambiguity, incompleteness. We defined new evaluation metrics such as Communication Rate and Good Question Rate, and then experimented on HumanEvalComm with different Code LLMs, and a new LLM agent approach, Okanagan, to identify and ask questions in ambiguous parts from code and descriptions for further refining the generated code. Finally, we discussed evaluation results by comparing Code LLMs and Okanagan with our findings.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司