Recently, studies have indicated that adversarial attacks pose a threat to deep learning systems. However, when there are only adversarial examples, people cannot get the original images, so there is research on reversible adversarial attacks. However, the existing strategies are aimed at invisible adversarial perturbation, and do not consider the case of locally visible adversarial perturbation. In this article, we generate reversible adversarial examples for local visual adversarial perturbation, and use reversible data embedding technology to embed the information needed to restore the original image into the adversarial examples to generate examples that are both adversarial and reversible. Experiments on ImageNet dataset show that our method can restore the original image losslessly while ensuring the attack capability.
Whereas adversarial training can be useful against specific adversarial perturbations, they have also proven ineffective in generalizing towards attacks deviating from those used for training. However, we observe that this ineffectiveness is intrinsically connected to domain adaptability, another crucial issue in deep learning for which adversarial domain adaptation appears to be a promising solution. Consequently, we proposed Adv-4-Adv as a novel adversarial training method that aims to retain robustness against unseen adversarial perturbations. Essentially, Adv-4-Adv treats attacks incurring different perturbations as distinct domains, and by leveraging the power of adversarial domain adaptation, it aims to remove the domain/attack-specific features. This forces a trained model to learn a robust domain-invariant representation, which in turn enhances its generalization ability. Extensive evaluations on Fashion-MNIST, SVHN, CIFAR-10, and CIFAR-100 demonstrate that a model trained by Adv-4-Adv based on samples crafted by simple attacks (e.g., FGSM) can be generalized to more advanced attacks (e.g., PGD), and the performance exceeds state-of-the-art proposals on these datasets.
Deep neural networks (DNNs) have shown remarkable performance in a variety of domains such as computer vision, speech recognition, or natural language processing. Recently they also have been applied to various software engineering tasks, typically involving processing source code. DNNs are well-known to be vulnerable to adversarial examples, i.e., fabricated inputs that could lead to various misbehaviors of the DNN model while being perceived as benign by humans. In this paper, we focus on the code comment generation task in software engineering and study the robustness issue of the DNNs when they are applied to this task. We propose ACCENT, an identifier substitution approach to craft adversarial code snippets, which are syntactically correct and semantically close to the original code snippet, but may mislead the DNNs to produce completely irrelevant code comments. In order to improve the robustness, ACCENT also incorporates a novel training method, which can be applied to existing code comment generation models. We conduct comprehensive experiments to evaluate our approach by attacking the mainstream encoder-decoder architectures on two large-scale publicly available datasets. The results show that ACCENT efficiently produces stable attacks with functionality-preserving adversarial examples, and the generated examples have better transferability compared with baselines. We also confirm, via experiments, the effectiveness in improving model robustness with our training method.
While multi-step adversarial training is widely popular as an effective defense method against strong adversarial attacks, its computational cost is notoriously expensive, compared to standard training. Several single-step adversarial training methods have been proposed to mitigate the above-mentioned overhead cost; however, their performance is not sufficiently reliable depending on the optimization setting. To overcome such limitations, we deviate from the existing input-space-based adversarial training regime and propose a single-step latent adversarial training method (SLAT), which leverages the gradients of latent representation as the latent adversarial perturbation. We demonstrate that the L1 norm of feature gradients is implicitly regularized through the adopted latent perturbation, thereby recovering local linearity and ensuring reliable performance, compared to the existing single-step adversarial training methods. Because latent perturbation is based on the gradients of the latent representations which can be obtained for free in the process of input gradients computation, the proposed method costs roughly the same time as the fast gradient sign method. Experiment results demonstrate that the proposed method, despite its structural simplicity, outperforms state-of-the-art accelerated adversarial training methods.
Recent work has shown that deep reinforcement learning (DRL) policies are vulnerable to adversarial perturbations. Adversaries can mislead policies of DRL agents by perturbing the state of the environment observed by the agents. Existing attacks are feasible in principle but face challenges in practice, for example by being too slow to fool DRL policies in real time. We show that using the Universal Adversarial Perturbation (UAP) method to compute perturbations, independent of the individual inputs to which they are applied to, can fool DRL policies effectively and in real time. We describe three such attack variants. Via an extensive evaluation using three Atari 2600 games, we show that our attacks are effective, as they fully degrade the performance of three different DRL agents (up to 100%, even when the $l_\infty$ bound on the perturbation is as small as 0.01). It is faster compared to the response time (0.6ms on average) of different DRL policies, and considerably faster than prior attacks using adversarial perturbations (1.8ms on average). We also show that our attack technique is efficient, incurring an online computational cost of 0.027ms on average. Using two further tasks involving robotic movement, we confirm that our results generalize to more complex DRL tasks. Furthermore, we demonstrate that the effectiveness of known defenses diminishes against universal perturbations. We propose an effective technique that detects all known adversarial perturbations against DRL policies, including all the universal perturbations presented in this paper.
Physical adversarial examples for camera-based computer vision have so far been achieved through visible artifacts -- a sticker on a Stop sign, colorful borders around eyeglasses or a 3D printed object with a colorful texture. An implicit assumption here is that the perturbations must be visible so that a camera can sense them. By contrast, we contribute a procedure to generate, for the first time, physical adversarial examples that are invisible to human eyes. Rather than modifying the victim object with visible artifacts, we modify light that illuminates the object. We demonstrate how an attacker can craft a modulated light signal that adversarially illuminates a scene and causes targeted misclassifications on a state-of-the-art ImageNet deep learning model. Concretely, we exploit the radiometric rolling shutter effect in commodity cameras to create precise striping patterns that appear on images. To human eyes, it appears like the object is illuminated, but the camera creates an image with stripes that will cause ML models to output the attacker-desired classification. We conduct a range of simulation and physical experiments with LEDs, demonstrating targeted attack rates up to 84%.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we "deflect'' adversarial attacks by causing the attacker to produce an input that semantically resembles the attack's target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called "adversarial'' because our network classifies them the same way as humans do.
Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance, especially considering the highly strict requirement of public safety. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, which can effectively generate adversarial examples for re-ID. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Moreover, by benchmarking various adversarial settings, we expect that our work can facilitate the development of robust feature learning with the experimental conclusions we have drawn.
There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers, which only model the conditional distribution of the labels given the inputs. In this paper we propose the deep Bayes classifier, which improves classical naive Bayes with conditional deep generative models. We further develop detection methods for adversarial examples, which reject inputs that have negative log-likelihood under the generative model exceeding a threshold pre-specified using training data. Experimental results suggest that deep Bayes classifiers are more robust than deep discriminative classifiers, and the proposed detection methods achieve high detection rates against many recently proposed attacks.
Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.