Given an input graph $G = (V, E)$, an additive emulator $H = (V, E', w)$ is a sparse weighted graph that preserves all distances in $G$ with small additive error. A recent line of inquiry has sought to determine the best additive error achievable in the sparsest setting, when $H$ has a linear number of edges. In particular, the work of [Kogan and Parter, ICALP 2023], following [Pettie, ICALP 2007], constructed linear size emulators with $+O(n^{0.222})$ additive error. It is known that the worst-case additive error must be at least $+\Omega(n^{2/29})$ due to [Lu, Vassilevska Williams, Wein, and Xu, SODA 2022]. We present a simple linear-size emulator construction that achieves additive error $+O(n^{0.191})$. Our approach extends the path-buying framework developed by [Baswana, Kavitha, Mehlhorn, and Pettie, SODA 2005] and [Vassilevska Williams and Bodwin, SODA 2016] to the setting of sparse additive emulators.
Regular decision processes (RDPs) are a subclass of non-Markovian decision processes where the transition and reward functions are guarded by some regular property of the past (a lookback). While RDPs enable intuitive and succinct representation of non-Markovian decision processes, their expressive power coincides with finite-state Markov decision processes (MDPs). We introduce omega-regular decision processes (ODPs) where the non-Markovian aspect of the transition and reward functions are extended to an omega-regular lookahead over the system evolution. Semantically, these lookaheads can be considered as promises made by the decision maker or the learning agent about her future behavior. In particular, we assume that, if the promised lookaheads are not met, then the payoff to the decision maker is $\bot$ (least desirable payoff), overriding any rewards collected by the decision maker. We enable optimization and learning for ODPs under the discounted-reward objective by reducing them to lexicographic optimization and learning over finite MDPs. We present experimental results demonstrating the effectiveness of the proposed reduction.
Leveraging machine-learning methods to predict outcomes on some unlabeled datasets and then using these pseudo-outcomes in subsequent statistical inference is common in modern data analysis. Inference in this setting is often called post-prediction inference. We propose a novel, assumption-lean framework for inference under post-prediction setting, called \emph{Prediction De-Correlated inference} (PDC). Our approach can automatically adapt to any black-box machine-learning model and consistently outperforms supervised methods. The PDC framework also offers easy extensibility for accommodating multiple predictive models. Both numerical results and real-world data analysis support our theoretical results.
We propose a novel combinatorial stochastic-greedy bandit (SGB) algorithm for combinatorial multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time step $t\in [T]$ is observed. SGB adopts an optimized stochastic-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms. Unlike existing methods that explore the entire set of unselected base arms during each selection step, our SGB algorithm samples only an optimized proportion of unselected arms and selects actions from this subset. We prove that our algorithm achieves a $(1-1/e)$-regret bound of $\mathcal{O}(n^{\frac{1}{3}} k^{\frac{2}{3}} T^{\frac{2}{3}} \log(T)^{\frac{2}{3}})$ for monotone stochastic submodular rewards, which outperforms the state-of-the-art in terms of the cardinality constraint $k$. Furthermore, we empirically evaluate the performance of our algorithm in the context of online constrained social influence maximization. Our results demonstrate that our proposed approach consistently outperforms the other algorithms, increasing the performance gap as $k$ grows.
In conventional multiple-input multiple-output (MIMO) communication systems, the positions of antennas are fixed. To take full advantage of spatial degrees of freedom, a new technology called fluid antenna (FA) is proposed to obtain higher achievable rate and diversity gain. Most existing works on FA exploit instantaneous channel state information (CSI). However, in FA-assisted systems, it is difficult to obtain instantaneous CSI since changes in the antenna position will lead to channel variation. In this letter, we investigate a FA-assisted MIMO system using relatively slow-varying statistical CSI. Specifically, in the criterion of rate maximization, we propose an algorithmic framework for transmit precoding and transmit/receive FAs position designs with statistical CSI. Simulation results show that our proposed algorithm in FA-assisted systems significantly outperforms baselines in terms of rate performance.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.