亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a game-based formulation for learning dimensionality-reducing representations of feature vectors, when only a prior knowledge on future prediction tasks is available. In this game, the first player chooses a representation, and then the second player adversarially chooses a prediction task from a given class, representing the prior knowledge. The first player aims is to minimize, and the second player to maximize, the regret: The minimal prediction loss using the representation, compared to the same loss using the original features. For the canonical setting in which the representation, the response to predict and the predictors are all linear functions, and under the mean squared error loss function, we derive the theoretically optimal representation in pure strategies, which shows the effectiveness of the prior knowledge, and the optimal regret in mixed strategies, which shows the usefulness of randomizing the representation. For general representations and loss functions, we propose an efficient algorithm to optimize a randomized representation. The algorithm only requires the gradients of the loss function, and is based on incrementally adding a representation rule to a mixture of such rules.

相關內容

Zero-shot cross-lingual knowledge transfer enables the multilingual pretrained language model (mPLM), finetuned on a task in one language, make predictions for this task in other languages. While being broadly studied for natural language understanding tasks, the described setting is understudied for generation. Previous works notice a frequent problem of generation in a wrong language and propose approaches to address it, usually using mT5 as a backbone model. In this work, we test alternative mPLMs, such as mBART and NLLB-200, considering full finetuning and parameter-efficient finetuning with adapters. We find that mBART with adapters performs similarly to mT5 of the same size, and NLLB-200 can be competitive in some cases. We also underline the importance of tuning learning rate used for finetuning, which helps to alleviate the problem of generation in the wrong language.

Data-driven approaches have revolutionized scientific research. Machine learning and statistical analysis are commonly utilized in this type of research. Despite their widespread use, these methodologies differ significantly in their techniques and objectives. Few studies have utilized a consistent dataset to demonstrate these differences within the social sciences, particularly in language and cognitive sciences. This study leverages the Buckeye Speech Corpus to illustrate how both machine learning and statistical analysis are applied in data-driven research to obtain distinct insights. This study significantly enhances our understanding of the diverse approaches employed in data-driven strategies.

We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly log-concave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.

Test-negative designs are widely used for post-market evaluation of vaccine effectiveness, particularly in cases where randomization is not feasible. Differing from classical test-negative designs where only healthcare-seekers with symptoms are included, recent test-negative designs have involved individuals with various reasons for testing, especially in an outbreak setting. While including these data can increase sample size and hence improve precision, concerns have been raised about whether they introduce bias into the current framework of test-negative designs, thereby demanding a formal statistical examination of this modified design. In this article, using statistical derivations, causal graphs, and numerical simulations, we show that the standard odds ratio estimator may be biased if various reasons for testing are not accounted for. To eliminate this bias, we identify three categories of reasons for testing, including symptoms, disease-unrelated reasons, and case contact tracing, and characterize associated statistical properties and estimands. Based on our characterization, we show how to consistently estimate each estimand via stratification. Furthermore, we describe when these estimands correspond to the same vaccine effectiveness parameter, and, when appropriate, propose a stratified estimator that can incorporate multiple reasons for testing and improve precision. The performance of our proposed method is demonstrated through simulation studies.

In (Dzanic, J. Comp. Phys., 508:113010, 2024), a limiting approach for high-order discontinuous Galerkin schemes was introduced which allowed for imposing constraints on the solution continuously (i.e., everywhere within the element). While exact for linear constraint functionals, this approach only imposed a sufficient (but not the minimum necessary) amount of limiting for nonlinear constraint functionals. This short note shows how this limiting approach can be extended to allow exactness for general nonlinear quasiconcave constraint functionals through a nonlinear limiting procedure, reducing unnecessary numerical dissipation. Some examples are shown for nonlinear pressure and entropy constraints in the compressible gas dynamics equations, where both analytic and iterative approaches are used.

Uniformly random unitaries, i.e. unitaries drawn from the Haar measure, have many useful properties, but cannot be implemented efficiently. This has motivated a long line of research into random unitaries that "look" sufficiently Haar random while also being efficient to implement. Two different notions of derandomisation have emerged: $t$-designs are random unitaries that information-theoretically reproduce the first $t$ moments of the Haar measure, and pseudorandom unitaries (PRUs) are random unitaries that are computationally indistinguishable from Haar random. In this work, we take a unified approach to constructing $t$-designs and PRUs. For this, we introduce and analyse the "$PFC$ ensemble", the product of a random computational basis permutation $P$, a random binary phase operator $F$, and a random Clifford unitary $C$. We show that this ensemble reproduces exponentially high moments of the Haar measure. We can then derandomise the $PFC$ ensemble to show the following: (1) Linear-depth $t$-designs. We give the first construction of a (diamond-error) approximate $t$-design with circuit depth linear in $t$. This follows from the $PFC$ ensemble by replacing the random phase and permutation operators with their $2t$-wise independent counterparts. (2) Non-adaptive PRUs. We give the first construction of PRUs with non-adaptive security, i.e. we construct unitaries that are indistinguishable from Haar random to polynomial-time distinguishers that query the unitary in parallel on an arbitary state. This follows from the $PFC$ ensemble by replacing the random phase and permutation operators with their pseudorandom counterparts. (3) Adaptive pseudorandom isometries. We show that if one considers isometries (rather than unitaries) from $n$ to $n + \omega(\log n)$ qubits, a small modification of our PRU construction achieves general adaptive security.

We propose a visually grounded speech model that learns new words and their visual depictions from just a few word-image example pairs. Given a set of test images and a spoken query, we ask the model which image depicts the query word. Previous work has simplified this few-shot learning problem by either using an artificial setting with digit word-image pairs or by using a large number of examples per class. Moreover, all previous studies were performed using English speech-image data. We propose an approach that can work on natural word-image pairs but with less examples, i.e. fewer shots, and then illustrate how this approach can be applied for multimodal few-shot learning in a real low-resource language, Yor\`ub\'a. Our approach involves using the given word-image example pairs to mine new unsupervised word-image training pairs from large collections of unlabelled speech and images. Additionally, we use a word-to-image attention mechanism to determine word-image similarity. With this new model, we achieve better performance with fewer shots than previous approaches on an existing English benchmark. Many of the model's mistakes are due to confusion between visual concepts co-occurring in similar contexts. The experiments on Yor\`ub\'a show the benefit of transferring knowledge from a multimodal model trained on a larger set of English speech-image data.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司