Using the equivalent inclusion method (a method strongly related to the Hashin-Shtrikman variational principle) as a surrogate model, we propose a variance reduction strategy for the numerical homogenization of random composites made of inclusions (or rather inhomogeneities) embedded in a homogeneous matrix. The efficiency of this strategy is demonstrated within the framework of two-dimensional, linear conductivity. Significant computational gains vs full-field simulations are obtained even for high contrast values. We also show that our strategy allows to investigate the influence of parameters of the microstructure on the macroscopic response. Our strategy readily extends to three-dimensional problems and to linear elasticity. Attention is paid to the computational cost of the surrogate model. In particular, an inexpensive approximation of the so-called influence tensors (that are used to compute the surrogate model) is proposed.
Goal-oriented error estimation provides the ability to approximate the discretization error in a chosen functional quantity of interest. Adaptive mesh methods provide the ability to control this discretization error to obtain accurate quantity of interest approximations while still remaining computationally feasible. Traditional discrete goal-oriented error estimates incur linearization errors in their derivation. In this paper, we investigate the role of linearization errors in adaptive goal-oriented error simulations. In particular, we develop a novel two-level goal-oriented error estimate that is free of linearization errors. Additionally, we highlight how linearization errors can facilitate the verification of the adjoint solution used in goal-oriented error estimation. We then verify the newly proposed error estimate by applying it to a model nonlinear problem for several quantities of interest and further highlight its asymptotic effectiveness as mesh sizes are reduced. In an adaptive mesh context, we then compare the newly proposed estimate to a more traditional two-level goal-oriented error estimate. We highlight that accounting for linearization errors in the error estimate can improve its effectiveness in certain situations and demonstrate that localizing linearization errors can lead to more optimal adapted meshes.
The generation of collider data using machine learning has emerged as a prominent research topic in particle physics due to the increasing computational challenges associated with traditional Monte Carlo simulation methods, particularly for future colliders with higher luminosity. Although generating particle clouds is analogous to generating point clouds, accurately modelling the complex correlations between the particles presents a considerable challenge. Additionally, variable particle cloud sizes further exacerbate these difficulties, necessitating more sophisticated models. In this work, we propose a novel model that utilizes an attention-based aggregation mechanism to address these challenges. The model is trained in an adversarial training paradigm, ensuring that both the generator and critic exhibit permutation equivariance/invariance with respect to their input. A novel feature matching loss in the critic is introduced to stabilize the training. The proposed model performs competitively to the state-of-art whilst having significantly fewer parameters.
The solution of computational fluid dynamics problems is one of the most computationally hard tasks, especially in the case of complex geometries and turbulent flow regimes. We propose to use Tensor Train (TT) methods, which possess logarithmic complexity in problem size and have great similarities with quantum algorithms in the structure of data representation. We develop the Tensor train Finite Element Method -- TetraFEM -- and the explicit numerical scheme for the solution of the incompressible Navier-Stokes equation via Tensor Trains. We test this approach on the simulation of liquids mixing in a T-shape mixer, which, to our knowledge, was done for the first time using tensor methods in such non-trivial geometries. As expected, we achieve exponential compression in memory of all FEM matrices and demonstrate an exponential speed-up compared to the conventional FEM implementation on dense meshes. In addition, we discuss the possibility of extending this method to a quantum computer to solve more complex problems. This paper is based on work we conducted for Evonik Industries AG.
Nonparametric maximum likelihood estimators (MLEs) in inverse problems often have non-normal limit distributions, like Chernoff's distribution. However, if one considers smooth functionals of the model, with corresponding functionals of the MLE, one gets normal limit distributions and faster rates of convergence. We demonstrate this for a model for the incubation time of a disease. The usual approach in the latter models is to use parametric distributions, like Weibull and gamma distributions, which leads to inconsistent estimators. Smoothed bootstrap methods are discussed for constructing confidence intervals. The classical bootstrap, based on the nonparametric MLE itself, has been proved to be inconsistent in this situation.
Capacity is an important tool in decision-making under risk and uncertainty and multi-criteria decision-making. When learning a capacity-based model, it is important to be able to generate uniformly a capacity. Due to the monotonicity constraints of a capacity, this task reveals to be very difficult. The classical Random Node Generator (RNG) algorithm is a fast-running speed capacity generator, however with poor performance. In this paper, we firstly present an exact algorithm for generating a $n$ elements' general capacity, usable when $n < 5$. Then, we present an improvement of the classical RNG by studying the distribution of the value of each element of a capacity. Furthermore, we divide it into two cases, the first one is the case without any conditions, and the second one is the case when some elements have been generated. Experimental results show that the performance of this improved algorithm is much better than the classical RNG while keeping a very reasonable computation time.
The (modern) arbitrary derivative (ADER) approach is a popular technique for the numerical solution of differential problems based on iteratively solving an implicit discretization of their weak formulation. In this work, focusing on an ODE context, we investigate several strategies to improve this approach. Our initial emphasis is on the order of accuracy of the method in connection with the polynomial discretization of the weak formulation. We demonstrate that precise choices lead to higher-order convergences in comparison to the existing literature. Then, we put ADER methods into a Deferred Correction (DeC) formalism. This allows to determine the optimal number of iterations, which is equal to the formal order of accuracy of the method, and to introduce efficient $p$-adaptive modifications. These are defined by matching the order of accuracy achieved and the degree of the polynomial reconstruction at each iteration. We provide analytical and numerical results, including the stability analysis of the new modified methods, the investigation of the computational efficiency, an application to adaptivity and an application to hyperbolic PDEs with a Spectral Difference (SD) space discretization.
Supervised dimension reduction (SDR) has been a topic of growing interest in data science, as it enables the reduction of high-dimensional covariates while preserving the functional relation with certain response variables of interest. However, existing SDR methods are not suitable for analyzing datasets collected from case-control studies. In this setting, the goal is to learn and exploit the low-dimensional structure unique to or enriched by the case group, also known as the foreground group. While some unsupervised techniques such as the contrastive latent variable model and its variants have been developed for this purpose, they fail to preserve the functional relationship between the dimension-reduced covariates and the response variable. In this paper, we propose a supervised dimension reduction method called contrastive inverse regression (CIR) specifically designed for the contrastive setting. CIR introduces an optimization problem defined on the Stiefel manifold with a non-standard loss function. We prove the convergence of CIR to a local optimum using a gradient descent-based algorithm, and our numerical study empirically demonstrates the improved performance over competing methods for high-dimensional data.
This study examines the identifiability of interaction kernels in mean-field equations of interacting particles or agents, an area of growing interest across various scientific and engineering fields. The main focus is identifying data-dependent function spaces where a quadratic loss functional possesses a unique minimizer. We consider two data-adaptive $L^2$ spaces: one weighted by a data-adaptive measure and the other using the Lebesgue measure. In each $L^2$ space, we show that the function space of identifiability is the closure of the RKHS associated with the integral operator of inversion. Alongside prior research, our study completes a full characterization of identifiability in interacting particle systems with either finite or infinite particles, highlighting critical differences between these two settings. Moreover, the identifiability analysis has important implications for computational practice. It shows that the inverse problem is ill-posed, necessitating regularization. Our numerical demonstrations show that the weighted $L^2$ space is preferable over the unweighted $L^2$ space, as it yields more accurate regularized estimators.
Accurate and efficient estimation of rare events probabilities is of significant importance, since often the occurrences of such events have widespread impacts. The focus in this work is on precisely quantifying these probabilities, often encountered in reliability analysis of complex engineering systems, based on an introduced framework termed Approximate Sampling Target with Post-processing Adjustment (ASTPA), which herein is integrated with and supported by gradient-based Hamiltonian Markov Chain Monte Carlo (HMCMC) methods. The developed techniques in this paper are applicable from low- to high-dimensional stochastic spaces, and the basic idea is to construct a relevant target distribution by weighting the original random variable space through a one-dimensional output likelihood model, using the limit-state function. To sample from this target distribution, we exploit HMCMC algorithms, a family of MCMC methods that adopts physical system dynamics, rather than solely using a proposal probability distribution, to generate distant sequential samples, and we develop a new Quasi-Newton mass preconditioned HMCMC scheme (QNp-HMCMC), which is particularly efficient and suitable for high-dimensional spaces. To eventually compute the rare event probability, an original post-sampling step is devised using an inverse importance sampling procedure based on the already obtained samples. The statistical properties of the estimator are analyzed as well, and the performance of the proposed methodology is examined in detail and compared against Subset Simulation in a series of challenging low- and high-dimensional problems.
This study aims to solve the over-reliance on the rank estimation strategy in the standard tensor factorization-based tensor recovery and the problem of a large computational cost in the standard t-SVD-based tensor recovery. To this end, we proposes a new tensor norm with a dual low-rank constraint, which utilizes the low-rank prior and rank information at the same time. In the proposed tensor norm, a series of surrogate functions of the tensor tubal rank can be used to achieve better performance in harness low-rankness within tensor data. It is proven theoretically that the resulting tensor completion model can effectively avoid performance degradation caused by inaccurate rank estimation. Meanwhile, attributed to the proposed dual low-rank constraint, the t-SVD of a smaller tensor instead of the original big one is computed by using a sample trick. Based on this, the total cost at each iteration of the optimization algorithm is reduced to $\mathcal{O}(n^3\log n +kn^3)$ from $\mathcal{O}(n^4)$ achieved with standard methods, where $k$ is the estimation of the true tensor rank and far less than $n$. Our method was evaluated on synthetic and real-world data, and it demonstrated superior performance and efficiency over several existing state-of-the-art tensor completion methods.