亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a seminal paper, Kannan and Lov\'asz (1988) considered a quantity $\mu_{KL}(\Lambda,K)$ which denotes the best volume-based lower bound on the covering radius $\mu(\Lambda,K)$ of a convex body $K$ with respect to a lattice $\Lambda$. Kannan and Lov\'asz proved that $\mu(\Lambda,K) \leq n \cdot \mu_{KL}(\Lambda,K)$ and the Subspace Flatness Conjecture by Dadush (2012) claims a $O(\log n)$ factor suffices, which would match the lower bound from the work of Kannan and Lov\'asz. We settle this conjecture up to a constant in the exponent by proving that $\mu(\Lambda,K) \leq O(\log^{3}(n)) \cdot \mu_{KL} (\Lambda,K)$. Our proof is based on the Reverse Minkowski Theorem due to Regev and Stephens-Davidowitz (2017). Following the work of Dadush (2012, 2019), we obtain a $(\log n)^{O(n)}$-time randomized algorithm to solve integer programs in $n$ variables. Another implication of our main result is a near-optimal flatness constant of $O(n \log^{4}(n))$.

相關內容

We approximate the d complex zeros of a univariate polynomial p(x) of a degree d or those zeros that lie in a fixed region of interest on the complex plane such as a disc or a square. Our divide and conquer algorithm of STOC 1995 supports solution of this problem in optimal Boolean time (up to a poly-logarithmic factor), that is, runs nearly as fast as one can access the coefficients of p with the precision necessary to support required accuracy of the output. That record complexity has not been matched by any other algorithm yet, but our root-finder of 1995 is quite involved and has never been implemented. We present alternative nearly optimal root-finders based on our novel variants of the classical subdivision iterations. Unlike our predecessor of 1995, we require randomization of Las Vegas type, allowing us to detect any output error at a dominated computational cost, but our new root-finders are much simpler to implement than their predecessor of 1995. According to the results of extensive test with standard test polynomials for their preliminary version, which incorporates only a part of our novel techniques, the new root-finders compete and for a large class of inputs significantly supersedes the package of root-finding subroutines MPSolve, which for decades has been user's choice package. Unlike our predecessor of 1995 and all known fast algorithms for the cited tasks of polynomial root-finding, our new algorithms can be also applied to a polynomial given by a black box oracle for its evaluation rather than by its coefficients. This makes our root-finders particularly efficient for polynomials p(x) that can be evaluated fast such as the Mandelbrot polynomials or those given by the sum of a small number of shifted monomials. Our algorithm can be readily extended to fast approximation of the eigenvalues of a matrix or a matrix polynomial.

We consider the problem of solving linear least squares problems in a framework where only evaluations of the linear map are possible. We derive randomized methods that do not need any other matrix operations than forward evaluations, especially no evaluation of the adjoint map is needed. Our method is motivated by the simple observation that one can get an unbiased estimate of the application of the adjoint. We show convergence of the method and then derive a more efficient method that uses an exact linesearch. This method, called random descent, resembles known methods in other context and has the randomized coordinate descent method as special case. We provide convergence analysis of the random descent method emphasizing the dependence on the underlying distribution of the random vectors. Furthermore we investigate the applicability of the method in the context of ill-posed inverse problems and show that the method can have beneficial properties when the unknown solution is rough. We illustrate the theoretical findings in numerical examples. One particular result is that the random descent method actually outperforms established transposed-free methods (TFQMR and CGS) in examples.

The objective of this study is to address the difficulty of simplifying the geometric model in which a differential problem is formulated, also called defeaturing, while simultaneously ensuring that the accuracy of the solution is maintained under control. This enables faster and more efficient simulations, without sacrificing accuracy. More precisely, we consider an isogeometric discretisation of an elliptic model problem defined on a two-dimensional hierarchical B-spline computational domain with a complex boundary. Starting with an oversimplification of the geometry, we build a goal-oriented adaptive strategy that adaptively reintroduces continuous geometrical features in regions where the analysis suggests a large impact on the quantity of interest. This strategy is driven by an a posteriori estimator of the defeaturing error based on first-order shape sensitivity analysis, and it profits from the local refinement properties of hierarchical B-splines. The adaptive algorithm is described together with a procedure to generate (partially) simplified hierarchical B-spline geometrical domains. Numerical experiments are presented to illustrate the proposed strategy and its limitations.

Highly oscillatory integrals of composite type arise in electronic engineering and their calculations is a challenging problem. In this paper, we propose two Gaussian quadrature rules for computing such integrals. The first one is constructed based on the classical theory of orthogonal polynomials and its nodes and weights can be computed efficiently by using tools of numerical linear algebra. We show that the rate of convergence of this rule depends solely on the regularity of the non-oscillatory part of the integrand. The second one is constructed with respect to a sign-changing function and the classical theory of Gaussian quadrature can not be used anymore. We explore theoretical properties of this Gaussian quadrature, including the trajectories of the quadrature nodes and the convergence rate of these nodes to the endpoints of the integration interval, and prove its asymptotic error estimate under suitable hypotheses. Numerical experiments are presented to demonstrate the performance of the proposed methods.

Empirical neural tangent kernels (eNTKs) can provide a good understanding of a given network's representation: they are often far less expensive to compute and applicable more broadly than infinite width NTKs. For networks with O output units (e.g. an O-class classifier), however, the eNTK on N inputs is of size $NO \times NO$, taking $O((NO)^2)$ memory and up to $O((NO)^3)$ computation. Most existing applications have therefore used one of a handful of approximations yielding $N \times N$ kernel matrices, saving orders of magnitude of computation, but with limited to no justification. We prove that one such approximation, which we call "sum of logits", converges to the true eNTK at initialization for any network with a wide final "readout" layer. Our experiments demonstrate the quality of this approximation for various uses across a range of settings.

In this paper, we introduce the problem of Matroid-Constrained Vertex Cover: given a graph with weights on the edges and a matroid imposed on the vertices, our problem is to choose a subset of vertices that is independent in the matroid, with the objective of maximizing the total weight of covered edges. This problem is a generalization of the much studied max $k$-vertex cover problem, in which the matroid is the simple uniform matroid, and it is also a special case of the problem of maximizing a monotone submodular function under a matroid constraint. First, we give a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) when the given matroid is a partition matroid, a laminar matroid, or a transversal matroid. Precisely, if $k$ is the rank of the matroid, we obtain $(1 - \varepsilon)$ approximation using $(1/\varepsilon)^{O(k)}n^{O(1)}$ time for partition and laminar matroids and using $(1/\varepsilon+k)^{O(k)}n^{O(1)}$ time for transversal matroids. This extends a result of Manurangsi for uniform matroids [Manurangsi, 2018]. We also show that these ideas can be applied in the context of (single-pass) streaming algorithms. Besides, our FPT-AS introduces a new technique based on matroid union, which may be of independent interest in extremal combinatorics. In the second part, we consider general matroids. We propose a simple local search algorithm that guarantees $2/3 \approx 0.66$ approximation. For the more general problem where two matroids are imposed on the vertices and a feasible solution must be a common independent set, we show that a local search algorithm gives a $2/3 \cdot (1 - 1/(p+1))$ approximation in $n^{O(p)}$ time, for any integer $p$. We also provide some evidence to show that with the constraint of one or two matroids, the approximation ratio of $2/3$ is likely the best possible, using the currently known techniques of local search.

Automating dysarthria assessments offers the opportunity to develop effective, low-cost tools that address the current limitations of manual and subjective assessments. Nonetheless, it is unclear whether current approaches rely on dysarthria-related speech patterns or external factors. We aim toward obtaining a clearer understanding of dysarthria patterns. To this extent, we study the effects of noise in recordings, both through addition and reduction. We design and implement a new method for visualizing and comparing feature extractors and models, at a patient level, in a more interpretable way. We use the UA-Speech dataset with a speaker-based split of the dataset. Results reported in the literature appear to have been done irrespective of such split, leading to models that may be overconfident due to data-leakage. We hope that these results raise awareness in the research community regarding the requirements for establishing reliable automatic dysarthria assessment systems.

First-order model counting (FOMC) is a computational problem that asks to count the models of a sentence in finite-domain first-order logic. In this paper, we argue that the capabilities of FOMC algorithms to date are limited by their inability to express many types of recursive computations. To enable such computations, we relax the restrictions that typically accompany domain recursion and generalise the circuits used to express a solution to an FOMC problem to directed graphs that may contain cycles. To this end, we adapt the most well-established (weighted) FOMC algorithm ForcLift to work with such graphs and introduce new compilation rules that can create cycle-inducing edges that encode recursive function calls. These improvements allow the algorithm to find efficient solutions to counting problems that were previously beyond its reach, including those that cannot be solved efficiently by any other exact FOMC algorithm. We end with a few conjectures on what classes of instances could be domain-liftable as a result.

The union-closed sets conjecture, attributed to P\'eter Frankl from 1979, states that for any non-empty finite union-closed family of finite sets not consisting of only the empty set, there is an element that is in at least half of the sets in the family. We prove a version of Frankl's conjecture for families distributed according to any one of infinitely many distributions. As a corollary, in the intersection-closed reformulation of Frankl's conjecture, we obtain that it is true for families distributed according to any one of infinitely many Maxwell--Boltzmann distributions with inverse temperatures bounded below by a positive universal constant. Frankl's original conjecture corresponds to zero inverse temperature.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司