亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Chinese Text Error Correction (CTEC) aims to detect and correct errors in the input text, which benefits human daily life and various downstream tasks. Recent approaches mainly employ Pre-trained Language Models (PLMs) to resolve CTEC. Although PLMs have achieved remarkable success in CTEC, we argue that previous studies still overlook the importance of human thinking patterns. To enhance the development of PLMs for CTEC, inspired by humans' daily error-correcting behavior, we propose a novel model-agnostic progressive learning framework, named ProTEC, which guides PLMs-based CTEC models to learn to correct like humans. During the training process, ProTEC guides the model to learn text error correction by incorporating these sub-tasks into a progressive paradigm. During the inference process, the model completes these sub-tasks in turn to generate the correction results. Extensive experiments and detailed analyses demonstrate the effectiveness and efficiency of our proposed model-agnostic ProTEC framework.

相關內容

In the context of machine learning for graphs, many researchers have empirically observed that Deep Graph Networks (DGNs) perform favourably on node classification tasks when the graph structure is homophilic (\ie adjacent nodes are similar). In this paper, we introduce Lying-GCN, a new DGN inspired by opinion dynamics that can adaptively work in both the heterophilic and the homophilic setting. At each layer, each agent (node) shares its own opinions (node embeddings) with its neighbours. Instead of sharing its opinion directly as in GCN, we introduce a mechanism which allows agents to lie. Such a mechanism is adaptive, thus the agents learn how and when to lie according to the task that should be solved. We provide a characterisation of our proposal in terms of dynamical systems, by studying the spectral property of the coefficient matrix of the system. While the steady state of the system collapses to zero, we believe the lying mechanism is still usable to solve node classification tasks. We empirically prove our belief on both synthetic and real-world datasets, by showing that the lying mechanism allows to increase the performances in the heterophilic setting without harming the results in the homophilic one.

Confidence scores of automatic speech recognition (ASR) outputs are often inadequately communicated, preventing its seamless integration into analytical workflows. In this paper, we introduce ConFides, a visual analytic system developed in collaboration with intelligence analysts to address this issue. ConFides aims to aid exploration and post-AI-transcription editing by visually representing the confidence associated with the transcription. We demonstrate how our tool can assist intelligence analysts who use ASR outputs in their analytical and exploratory tasks and how it can help mitigate misinterpretation of crucial information. We also discuss opportunities for improving textual data cleaning and model transparency for human-machine collaboration.

Sliced Wasserstein (SW) and Generalized Sliced Wasserstein (GSW) have been widely used in applications due to their computational and statistical scalability. However, the SW and the GSW are only defined between distributions supported on a homogeneous domain. This limitation prevents their usage in applications with heterogeneous joint distributions with marginal distributions supported on multiple different domains. Using SW and GSW directly on the joint domains cannot make a meaningful comparison since their homogeneous slicing operator i.e., Radon Transform (RT) and Generalized Radon Transform (GRT) are not expressive enough to capture the structure of the joint supports set. To address the issue, we propose two new slicing operators i.e., Partial Generalized Radon Transform (PGRT) and Hierarchical Hybrid Radon Transform (HHRT). In greater detail, PGRT is the generalization of Partial Radon Transform (PRT), which transforms a subset of function arguments non-linearly while HHRT is the composition of PRT and multiple domain-specific PGRT on marginal domain arguments. By using HHRT, we extend the SW into Hierarchical Hybrid Sliced Wasserstein (H2SW) distance which is designed specifically for comparing heterogeneous joint distributions. We then discuss the topological, statistical, and computational properties of H2SW. Finally, we demonstrate the favorable performance of H2SW in 3D mesh deformation, deep 3D mesh autoencoders, and datasets comparison.

In recent advances in automatic text recognition (ATR), deep neural networks have demonstrated the ability to implicitly capture language statistics, potentially reducing the need for traditional language models. This study directly addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition. We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models. Our experiments on three datasets - IAM, RIMES, and NorHand v2 - at both line and page level, investigate optimal parameters for n-gram models, including their order, weight, smoothing methods and tokenization level. The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets, challenging the notion that deep learning models alone are sufficient for optimal performance. In particular, the combination of DAN with a character language model outperforms current benchmarks, confirming the value of hybrid approaches in modern document analysis systems.

Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of 9.7% within the Stanford Cars dataset and 12x clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at //github.com/xjtuYW/PNP.git.

This paper explores the application of Swarm-Structured Multi-Agent Systems (MAS) to establish medical necessity, a process that involves a systematic review of patient-specific medical structured and unstructured data against clinical guidelines. We addressed this complex task by decomposing it into smaller, more manageable sub-tasks. Each sub-task is handled by a specialized AI agent. We conduct a systematic study of the impact of various prompting strategies on these agents and benchmark different Large Language Models (LLMs) to determine their accuracy in completing these tasks. Additionally, we investigate how these agents can provide explainability, thereby enhancing trust and transparency within the system.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司