亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive the form of the variance-covariance matrix for any affine equivariant matrix-valued statistics when sampling from complex elliptical distributions. We then use this result to derive the variance-covariance matrix of the sample covariance matrix (SCM) as well as its theoretical mean squared error (MSE) when finite fourth-order moments exist. Finally, illustrative examples of the formulas are presented.

相關內容

在概率論(lun)和統計學中,協(xie)方(fang)(fang)差(cha)矩陣(zhen)(也稱為自協(xie)方(fang)(fang)差(cha)矩陣(zhen),色散矩陣(zhen),方(fang)(fang)差(cha)矩陣(zhen)或方(fang)(fang)差(cha)-協(xie)方(fang)(fang)差(cha)矩陣(zhen))是平(ping)方(fang)(fang)矩陣(zhen),給出了(le)給定隨機向(xiang)量的(de)每對元素(su)之(zhi)間(jian)的(de)協(xie)方(fang)(fang)差(cha)。 在矩陣(zhen)對角線中存(cun)在方(fang)(fang)差(cha),即每個元素(su)與其自身(shen)的(de)協(xie)方(fang)(fang)差(cha)。

In this work, we study a variant of nonnegative matrix factorization where we wish to find a symmetric factorization of a given input matrix into a sparse, Boolean matrix. Formally speaking, given $\mathbf{M}\in\mathbb{Z}^{m\times m}$, we want to find $\mathbf{W}\in\{0,1\}^{m\times r}$ such that $\| \mathbf{M} - \mathbf{W}\mathbf{W}^\top \|_0$ is minimized among all $\mathbf{W}$ for which each row is $k$-sparse. This question turns out to be closely related to a number of questions like recovering a hypergraph from its line graph, as well as reconstruction attacks for private neural network training. As this problem is hard in the worst-case, we study a natural average-case variant that arises in the context of these reconstruction attacks: $\mathbf{M} = \mathbf{W}\mathbf{W}^{\top}$ for $\mathbf{W}$ a random Boolean matrix with $k$-sparse rows, and the goal is to recover $\mathbf{W}$ up to column permutation. Equivalently, this can be thought of as recovering a uniformly random $k$-uniform hypergraph from its line graph. Our main result is a polynomial-time algorithm for this problem based on bootstrapping higher-order information about $\mathbf{W}$ and then decomposing an appropriate tensor. The key ingredient in our analysis, which may be of independent interest, is to show that such a matrix $\mathbf{W}$ has full column rank with high probability as soon as $m = \widetilde{\Omega}(r)$, which we do using tools from Littlewood-Offord theory and estimates for binary Krawtchouk polynomials.

The widespread availability of high-dimensional biological data has made the simultaneous screening of many biological characteristics a central problem in computational biology and allied sciences. While the dimensionality of such datasets continues to grow, so too does the complexity of biomarker identification from exposure patterns in health studies measuring baseline confounders; moreover, doing so while avoiding model misspecification remains an issue only partially addressed. Efficient estimators capable of incorporating flexible, data adaptive regression techniques in estimating relevant components of the data-generating distribution provide an avenue for avoiding model misspecification; however, in the context of high-dimensional problems that require the simultaneous estimation of numerous parameters, standard variance estimators have proven unstable, resulting in unreliable Type-I error control even under standard multiple testing corrections. We present a general approach for applying empirical Bayes shrinkage to variance estimators of a family of efficient, asymptotically linear estimators of population intervention causal effects. Our generalization of shrinkage-based variance estimators increases inferential stability in high-dimensional settings, facilitating the application of these estimators for deriving nonparametric variable importance measures in high-dimensional biological datasets with modest sample sizes. The result is a data adaptive approach for robustly uncovering stable causal associations in high-dimensional data in studies with limited samples. Our generalized variance estimator is evaluated against alternative variance estimators in numerical experiments. Identification of biomarkers with the proposed methodology is demonstrated in an analysis of high-dimensional DNA methylation data from an observational study on the epigenetic effects of tobacco smoking.

The paper deals with the distribution of singular values of the input-output Jacobian of deep untrained neural networks in the limit of their infinite width. The Jacobian is the product of random matrices where the independent rectangular weight matrices alternate with diagonal matrices whose entries depend on the corresponding column of the nearest neighbor weight matrix. The problem was considered in \cite{Pe-Co:18} for the Gaussian weights and biases and also for the weights that are Haar distributed orthogonal matrices and Gaussian biases. Basing on a free probability argument, it was claimed that in these cases the singular value distribution of the Jacobian in the limit of infinite width (matrix size) coincides with that of the analog of the Jacobian with special random but weight independent diagonal matrices, the case well known in random matrix theory. The claim was rigorously proved in \cite{Pa-Sl:21} for a quite general class of weights and biases with i.i.d. (including Gaussian) entries by using a version of the techniques of random matrix theory. In this paper we use another version of the techniques to justify the claim for random Haar distributed weight matrices and Gaussian biases.

In this work we present a novel bulk-surface virtual element method (BSVEM) for the numerical approximation of elliptic bulk-surface partial differential equations (BSPDEs) in three space dimensions. The BSVEM is based on the discretisation of the bulk domain into polyhedral elements with arbitrarily many faces. The polyhedral approximation of the bulk induces a polygonal approximation of the surface. Firstly, we present a geometric error analysis of bulk-surface polyhedral meshes independent of the numerical method. Then, we show that BSVEM has optimal second-order convergence in space, provided the exact solution is $H^{2+3/4}$ in the bulk and $H^2$ on the surface, where the additional $\frac{3}{4}$ is due to the combined effect of surface curvature and polyhedral elements close to the boundary. We show that general polyhedra can be exploited to reduce the computational time of the matrix assembly. To demonstrate optimal convergence results, a numerical example is presented on the unit sphere.

Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions that may cause performance drops. In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data. We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples for which model confidence exceeds that threshold. ATC outperforms previous methods across several model architectures, types of distribution shifts (e.g., due to synthetic corruptions, dataset reproduction, or novel subpopulations), and datasets (Wilds, ImageNet, Breeds, CIFAR, and MNIST). In our experiments, ATC estimates target performance $2$-$4\times$ more accurately than prior methods. We also explore the theoretical foundations of the problem, proving that, in general, identifying the accuracy is just as hard as identifying the optimal predictor and thus, the efficacy of any method rests upon (perhaps unstated) assumptions on the nature of the shift. Finally, analyzing our method on some toy distributions, we provide insights concerning when it works.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Policy gradient (PG) methods are popular reinforcement learning (RL) methods where a baseline is often applied to reduce the variance of gradient estimates. In multi-agent RL (MARL), although the PG theorem can be naturally extended, the effectiveness of multi-agent PG (MAPG) methods degrades as the variance of gradient estimates increases rapidly with the number of agents. In this paper, we offer a rigorous analysis of MAPG methods by, firstly, quantifying the contributions of the number of agents and agents' explorations to the variance of MAPG estimators. Based on this analysis, we derive the optimal baseline (OB) that achieves the minimal variance. In comparison to the OB, we measure the excess variance of existing MARL algorithms such as vanilla MAPG and COMA. Considering using deep neural networks, we also propose a surrogate version of OB, which can be seamlessly plugged into any existing PG methods in MARL. On benchmarks of Multi-Agent MuJoCo and StarCraft challenges, our OB technique effectively stabilises training and improves the performance of multi-agent PPO and COMA algorithms by a significant margin.

We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.

Deep learning is the mainstream technique for many machine learning tasks, including image recognition, machine translation, speech recognition, and so on. It has outperformed conventional methods in various fields and achieved great successes. Unfortunately, the understanding on how it works remains unclear. It has the central importance to lay down the theoretic foundation for deep learning. In this work, we give a geometric view to understand deep learning: we show that the fundamental principle attributing to the success is the manifold structure in data, namely natural high dimensional data concentrates close to a low-dimensional manifold, deep learning learns the manifold and the probability distribution on it. We further introduce the concepts of rectified linear complexity for deep neural network measuring its learning capability, rectified linear complexity of an embedding manifold describing the difficulty to be learned. Then we show for any deep neural network with fixed architecture, there exists a manifold that cannot be learned by the network. Finally, we propose to apply optimal mass transportation theory to control the probability distribution in the latent space.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司