亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simultaneous Localization and Mapping (SLAM) is being deployed in real-world applications, however many state-of-the-art solutions still struggle in many common scenarios. A key necessity in progressing SLAM research is the availability of high-quality datasets and fair and transparent benchmarking. To this end, we have created the Hilti-Oxford Dataset, to push state-of-the-art SLAM systems to their limits. The dataset has a variety of challenges ranging from sparse and regular construction sites to a 17th century neoclassical building with fine details and curved surfaces. To encourage multi-modal SLAM approaches, we designed a data collection platform featuring a lidar, five cameras, and an IMU (Inertial Measurement Unit). With the goal of benchmarking SLAM algorithms for tasks where accuracy and robustness are paramount, we implemented a novel ground truth collection method that enables our dataset to accurately measure SLAM pose errors with millimeter accuracy. To further ensure accuracy, the extrinsics of our platform were verified with a micrometer-accurate scanner, and temporal calibration was managed online using hardware time synchronization. The multi-modality and diversity of our dataset attracted a large field of academic and industrial researchers to enter the second edition of the Hilti SLAM challenge, which concluded in June 2022. The results of the challenge show that while the top three teams could achieve an accuracy of 2cm or better for some sequences, the performance dropped off in more difficult sequences.

相關內容

即(ji)時(shi)(shi)定位與(yu)地圖(tu)構建(SLAM或Simultaneouslocalizationandmapping)是這樣一種技(ji)術:使得機器人和自動駕駛(shi)汽車等設備(bei)能(neng)在(zai)未知(zhi)環境(沒有先驗知(zhi)識的前提下)建立地圖(tu),或者在(zai)已知(zhi)環境(已給出(chu)該地圖(tu)的先驗知(zhi)識)中能(neng)更(geng)新地圖(tu),并保證這些設備(bei)能(neng)在(zai)同(tong)時(shi)(shi)追(zhui)蹤它們(men)的當前位置。

We propose a smart dimming sunglasses system for individuals with photophobia, especially those who are easily irritated by light intensity. The system uses a spatial light modulator (SLM) to selectively filter light entering the eye based on the scene detection of a camera. By controlling the transmittance of each pixel on the SLM using a modulation function, the proposed sunglasses enable an automated non-linear field of view dimming and also flexible light modulation that meets the photophobic user's visual requirements. Meanwhile, an occlusion mask created on the SLM, which possesses low transmittance to block the incoming light rays, appears blurred from the eye since the focal plane is not on the SLM and blocks the light stimulation insufficiently. To solve this problem, the aperture-based expanded mask has been used in past studies, however, the excessive large expansion ratio used in this approach leads to over-blocking (occlusion leak). In this work, we build an optimization model by simulating the defocused occlusion mask and determining the effective contribution of the degraded pixels based on the occlusion efficiency of the pixel transmittance. While the non-processed mask cannot provide sufficient occlusion and the aperture-based expanded mask causes occlusion leak, our optimized mask attenuates the intensely bright areas to a proper brightness without incorrectly attenuating surrounding areas that no need to modulation.

Forecasting the water level of the Han River is essential to control traffic and avoid natural disasters. The stream flow of the Han River is affected by various and intricately connected factors. Thus, a simple forecasting machine frequently fails to capture its serial pattern. On the other hand, a complex predictive model loses the interpretability of the model output. This work proposes a neural network model with a novel transformer exploiting a causal relationship based on prior knowledge. The transformer consists of spatiotemporal attention weight that describes the spatial and temporal causation with multilayer networks with masking. Our model has two distinguished advantages against the existing spatiotemporal forecasting models. First, the model allows the heterogeneous predictors for each site such that a flexible regression is applicable to the causal network. Next, the model is adapted to partially identified causal structures. As a result, we have relaxed the constraints of the applicable causal network through our model. In real data analysis, we use the Han River dataset from 2016 to 2021, compare the proposed model with deep learning models, and confirm that our model provides an interpretable and consistent model with prior knowledge, such as a seasonality arising from the tidal force. Furthermore, in prediction performance, our model is better than or competitive with the state-of-the-art models.

Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.

The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of machine learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.

In this paper, we adopt 3D Convolutional Neural Networks to segment volumetric medical images. Although deep neural networks have been proven to be very effective on many 2D vision tasks, it is still challenging to apply them to 3D tasks due to the limited amount of annotated 3D data and limited computational resources. We propose a novel 3D-based coarse-to-fine framework to effectively and efficiently tackle these challenges. The proposed 3D-based framework outperforms the 2D counterpart to a large margin since it can leverage the rich spatial infor- mation along all three axes. We conduct experiments on two datasets which include healthy and pathological pancreases respectively, and achieve the current state-of-the-art in terms of Dice-S{\o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset, we outperform the previous best by an average of over 2%, and the worst case is improved by 7% to reach almost 70%, which indicates the reliability of our framework in clinical applications.

In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.

北京阿比特科技有限公司