亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Serverless computing is leading the way to a simplified and general purpose programming model for the cloud. A key enabler behind serverless is efficient load balancing, which routes continuous workloads to appropriate backend resources. However, current load balancing algorithms implemented in Kubernetes native serverless platforms are simple heuristics without performance guarantee. Although policies such as Pod or JFIQ yield asymptotically optimal mean response time, the information they depend on are usually unavailable. In addition, dispatching jobs with strict deadlines, fractional workloads, and maximum parallelism bound to limited resources online is difficult because the resource allocation decisions for jobs are intertwined. To design an online load balancing algorithm without assumptions on distributions while maximizing the social welfare, we construct several pseudo-social welfare functions and cost functions, where the latter is to estimate the marginal cost for provisioning services to every newly arrived job based on present resource surplus. The proposed algorithm, named OnSocMax, works by following the solutions of several convex pseudo-social welfare maximization problems. It is proved to be $\alpha$-competitive for some $\alpha$ at least 2. We also validate OnSocMax with simulations and the results show that it distinctly outperforms several handcrafted benchmarks.

相關內容

Differential privacy (DP) has been recently introduced to linear contextual bandits to formally address the privacy concerns in its associated personalized services to participating users (e.g., recommendations). Prior work largely focus on two trust models of DP: the central model, where a central server is responsible for protecting users sensitive data, and the (stronger) local model, where information needs to be protected directly on user side. However, there remains a fundamental gap in the utility achieved by learning algorithms under these two privacy models, e.g., $\tilde{O}(\sqrt{T})$ regret in the central model as compared to $\tilde{O}(T^{3/4})$ regret in the local model, if all users are unique within a learning horizon $T$. In this work, we aim to achieve a stronger model of trust than the central model, while suffering a smaller regret than the local model by considering recently popular shuffle model of privacy. We propose a general algorithmic framework for linear contextual bandits under the shuffle trust model, where there exists a trusted shuffler in between users and the central server, that randomly permutes a batch of users data before sending those to the server. We then instantiate this framework with two specific shuffle protocols: one relying on privacy amplification of local mechanisms, and another incorporating a protocol for summing vectors and matrices of bounded norms. We prove that both these instantiations lead to regret guarantees that significantly improve on that of the local model, and can potentially be of the order $\tilde{O}(T^{3/5})$ if all users are unique. We also verify this regret behavior with simulations on synthetic data. Finally, under the practical scenario of non-unique users, we show that the regret of our shuffle private algorithm scale as $\tilde{O}(T^{2/3})$, which matches that the central model could achieve in this case.

Sparse code multiple access (SCMA) is an emerging paradigm for efficient enabling of massive connectivity in future machine-type communications (MTC). In this letter, we conceive the uplink transmissions of the low-density parity check (LDPC) coded SCMA system. Traditional receiver design of LDPC-SCMA system, which is based on message passing algorithm (MPA) for multiuser detection followed by individual LDPC decoding, may suffer from the drawback of the high complexity and large decoding latency, especially when the system has large codebook size and/or high overloading factor. To address this problem, we introduce a novel receiver design by applying the expectation propagation algorithm (EPA) to the joint detection and decoding (JDD) involving an aggregated factor graph of LDPC code and sparse codebooks. Our numerical results demonstrate the superiority of the proposed EPA based JDD receiver over the conventional Turbo receiver in terms of both significantly lower complexity and faster convergence rate without noticeable error rate performance degradation.

Decentralized stochastic gradient descent (SGD) is a driving engine for decentralized federated learning (DFL). The performance of decentralized SGD is jointly influenced by inter-node communications and local updates. In this paper, we propose a general DFL framework, which implements both multiple local updates and multiple inter-node communications periodically, to strike a balance between communication efficiency and model consensus. It can provide a general decentralized SGD analytical framework. We establish strong convergence guarantees for the proposed DFL algorithm without the assumption of convex objectives. The convergence rate of DFL can be optimized to achieve the balance of communication and computing costs under constrained resources. For improving communication efficiency of DFL, compressed communication is further introduced to the proposed DFL as a new scheme, named DFL with compressed communication (C-DFL). The proposed C-DFL exhibits linear convergence for strongly convex objectives. Experiment results based on MNIST and CIFAR-10 datasets illustrate the superiority of DFL over traditional decentralized SGD methods and show that C-DFL further enhances communication efficiency.

Non-stationarity is one thorny issue in cooperative multi-agent reinforcement learning (MARL). One of the reasons is the policy changes of agents during the learning process. Some existing works have discussed various consequences caused by non-stationarity with several kinds of measurement indicators. This makes the objectives or goals of existing algorithms are inevitably inconsistent and disparate. In this paper, we introduce a novel notion, the $\delta$-measurement, to explicitly measure the non-stationarity of a policy sequence, which can be further proved to be bounded by the KL-divergence of consecutive joint policies. A straightforward but highly non-trivial way is to control the joint policies' divergence, which is difficult to estimate accurately by imposing the trust-region constraint on the joint policy. Although it has lower computational complexity to decompose the joint policy and impose trust-region constraints on the factorized policies, simple policy factorization like mean-field approximation will lead to more considerable policy divergence, which can be considered as the trust-region decomposition dilemma. We model the joint policy as a pairwise Markov random field and propose a trust-region decomposition network (TRD-Net) based on message passing to estimate the joint policy divergence more accurately. The Multi-Agent Mirror descent policy algorithm with Trust region decomposition, called MAMT, is established by adjusting the trust-region of the local policies adaptively in an end-to-end manner. MAMT can approximately constrain the consecutive joint policies' divergence to satisfy $\delta$-stationarity and alleviate the non-stationarity problem. Our method can bring noticeable and stable performance improvement compared with baselines in cooperative tasks of different complexity.

In the context of estimating stochastically ordered distribution functions, the pool-adjacent-violators algorithm (PAVA) can be modified such that the computation times are reduced substantially. This is achieved by studying the dependence of antitonic weighted least squares fits on the response vector to be approximated.

Demand response (DR), as one of the important energy resources in the future's grid, provides the services of peak shaving, enhancing the efficiency of renewable energy utilization with a short response period, and low cost. Various categories of DR are established, e.g. automated DR, incentive DR, emergency DR, and demand bidding. However, with the practical issue of the unawareness of residential and commercial consumers' utility models, the researches about demand bidding aggregator involved in the electricity market are just at the beginning stage. For this issue, the bidding price and bidding quantity are two required decision variables while considering the uncertainties due to the market and participants. In this paper, we determine the bidding and purchasing strategy simultaneously employing the smart meter data and functions. A two-agent deep deterministic policy gradient method is developed to optimize the decisions through learning historical bidding experiences. The online learning further utilizes the daily newest bidding experience attained to ensure trend tracing and self-adaptation. Two environment simulators are adopted for testifying the robustness of the model. The results prove that when facing diverse situations the proposed model can earn the optimal profit via off/online learning the bidding rules and robustly making the proper bid.

System optimum (SO) routing, wherein the total travel time of all users is minimized, is a holy grail for transportation authorities. However, SO routing may discriminate against users who incur much larger travel times than others to achieve high system efficiency, i.e., low total travel times. To address the inherent unfairness of SO routing, we study the ${\beta}$-fair SO problem whose goal is to minimize the total travel time while guaranteeing a ${\beta\geq 1}$ level of unfairness, which specifies the maximum possible ratio between the travel times of different users with shared origins and destinations. To obtain feasible solutions to the ${\beta}$-fair SO problem while achieving high system efficiency, we develop a new convex program, the Interpolated Traffic Assignment Problem (I-TAP), which interpolates between a fairness-promoting and an efficiency-promoting traffic-assignment objective. We evaluate the efficacy of I-TAP through theoretical bounds on the total system travel time and level of unfairness in terms of its interpolation parameter, as well as present a numerical comparison between I-TAP and a state-of-the-art algorithm on a range of transportation networks. The numerical results indicate that our approach is faster by several orders of magnitude as compared to the benchmark algorithm, while achieving higher system efficiency for all desirable levels of unfairness. We further leverage the structure of I-TAP to develop two pricing mechanisms to collectively enforce the I-TAP solution in the presence of selfish homogeneous and heterogeneous users, respectively, that independently choose routes to minimize their own travel costs. We mention that this is the first study of pricing in the context of fair routing for general road networks (as opposed to, e.g., parallel road networks).

Fairness has emerged as an important concern in automated decision-making in recent years, especially when these decisions affect human welfare. In this work, we study fairness in temporally extended decision-making settings, specifically those formulated as Markov Decision Processes (MDPs). Our proposed notion of fairness ensures that each state's long-term visitation frequency is at least a specified fraction. This quota-based notion of fairness is natural in many resource-allocation settings where the dynamics of a single resource being allocated is governed by an MDP and the distribution of the shared resource is captured by its state-visitation frequency. In an average-reward MDP (AMDP) setting, we formulate the problem as a bilinear saddle point program and, for a generative model, solve it using a Stochastic Mirror Descent (SMD) based algorithm. The proposed solution guarantees a simultaneous approximation on the expected average-reward and fairness requirement. We give sample complexity bounds for the proposed algorithm and validate our theoretical results with experiments on simulated data.

Virtual network embedding is one of the key problems of network virtualization. Since virtual network mapping is an NP-hard problem, a lot of research has focused on the evolutionary algorithm's masterpiece genetic algorithm. However, the parameter setting in the traditional method is too dependent on experience, and its low flexibility makes it unable to adapt to increasingly complex network environments. In addition, link-mapping strategies that do not consider load balancing can easily cause link blocking in high-traffic environments. In the IoT environment involving medical, disaster relief, life support and other equipment, network performance and stability are particularly important. Therefore, how to provide a more flexible virtual network mapping service in a heterogeneous network environment with large traffic is an urgent problem. Aiming at this problem, a virtual network mapping strategy based on hybrid genetic algorithm is proposed. This strategy uses a dynamically calculated cross-probability and pheromone-based mutation gene selection strategy to improve the flexibility of the algorithm. In addition, a weight update mechanism based on load balancing is introduced to reduce the probability of mapping failure while balancing the load. Simulation results show that the proposed method performs well in a number of performance metrics including mapping average quotation, link load balancing, mapping cost-benefit ratio, acceptance rate and running time.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

北京阿比特科技有限公司