For image restoration, methods leveraging priors from generative models have been proposed and demonstrated a promising capacity to robustly restore photorealistic and high-quality results. However, these methods are susceptible to semantic ambiguity, particularly with images that have obviously correct semantics such as facial images. In this paper, we propose a semantic-aware latent space exploration method for image restoration (SAIR). By explicitly modeling semantics information from a given reference image, SAIR is able to reliably restore severely degraded images not only to high-resolution and highly realistic looks but also to correct semantics. Quantitative and qualitative experiments collectively demonstrate the superior performance of the proposed SAIR. Our code is available at //github.com/Liamkuo/SAIR.
Modeling the correlations among errors is closely associated with how accurately the model can quantify predictive uncertainty in probabilistic time series forecasting. Recent multivariate models have made significant progress in accounting for contemporaneous correlations among errors, while a common assumption on these errors is that they are temporally independent for the sake of statistical simplicity. However, real-world observations often deviate from this assumption, since errors usually exhibit substantial autocorrelation due to various factors such as the exclusion of temporally correlated covariates. In this work, we propose an efficient method, based on a low-rank-plus-diagonal parameterization of the covariance matrix, which can effectively characterize the autocorrelation of errors. The proposed method possesses several desirable properties: the complexity does not scale with the number of time series, the resulting covariance can be used for calibrating predictions, and it can seamlessly integrate with any model with Gaussian-distributed errors. We empirically demonstrate these properties using two distinct neural forecasting models-GPVar and Transformer. Our experimental results confirm the effectiveness of our method in enhancing predictive accuracy and the quality of uncertainty quantification on multiple real-world datasets.
Text-guided diffusion models have become a popular tool in image synthesis, known for producing high-quality and diverse images. However, their application to editing real images often encounters hurdles primarily due to the text condition deteriorating the reconstruction quality and subsequently affecting editing fidelity. Null-text Inversion (NTI) has made strides in this area, but it fails to capture spatial context and requires computationally intensive per-timestep optimization. Addressing these challenges, we present Noise Map Guidance (NMG), an inversion method rich in a spatial context, tailored for real-image editing. Significantly, NMG achieves this without necessitating optimization, yet preserves the editing quality. Our empirical investigations highlight NMG's adaptability across various editing techniques and its robustness to variants of DDIM inversions.
This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts, considering dependencies between quantiles and marginals through a smoothing procedure that allows for online learning. We discuss two smoothing methods: dimensionality reduction using Basis matrices and penalized smoothing. The new online learning algorithm generalizes the standard CRPS learning framework into multivariate dimensions. It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic learning properties. The procedure uses horizontal aggregation, i.e., aggregation across quantiles. We provide an in-depth discussion on possible extensions of the algorithm and several nested cases related to the existing literature on online forecast combination. We apply the proposed methodology to forecasting day-ahead electricity prices, which are 24-dimensional distributional forecasts. The proposed method yields significant improvements over uniform combination in terms of continuous ranked probability score (CRPS). We discuss the temporal evolution of the weights and hyperparameters and present the results of reduced versions of the preferred model. A fast C++ implementation of the proposed algorithm is provided in the open-source R-Package profoc on CRAN.
The ability of deep image prior (DIP) to recover high-quality images from incomplete or corrupted measurements has made it popular in inverse problems in image restoration and medical imaging including magnetic resonance imaging (MRI). However, conventional DIP suffers from severe overfitting and spectral bias effects.In this work, we first provide an analysis of how DIP recovers information from undersampled imaging measurements by analyzing the training dynamics of the underlying networks in the kernel regime for different architectures.This study sheds light on important underlying properties for DIP-based recovery.Current research suggests that incorporating a reference image as network input can enhance DIP's performance in image reconstruction compared to using random inputs. However, obtaining suitable reference images requires supervision, and raises practical difficulties. In an attempt to overcome this obstacle, we further introduce a self-driven reconstruction process that concurrently optimizes both the network weights and the input while eliminating the need for training data. Our method incorporates a novel denoiser regularization term which enables robust and stable joint estimation of both the network input and reconstructed image.We demonstrate that our self-guided method surpasses both the original DIP and modern supervised methods in terms of MR image reconstruction performance and outperforms previous DIP-based schemes for image inpainting.
We introduce a new mean-field ODE and corresponding interacting particle systems (IPS) for sampling from an unnormalized target density. The IPS are gradient-free, available in closed form, and only require the ability to sample from a reference density and compute the (unnormalized) target-to-reference density ratio. The mean-field ODE is obtained by solving a Poisson equation for a velocity field that transports samples along the geometric mixture of the two densities, which is the path of a particular Fisher-Rao gradient flow. We employ a RKHS ansatz for the velocity field, which makes the Poisson equation tractable and enables discretization of the resulting mean-field ODE over finite samples. The mean-field ODE can be additionally be derived from a discrete-time perspective as the limit of successive linearizations of the Monge-Amp\`ere equations within a framework known as sample-driven optimal transport. We introduce a stochastic variant of our approach and demonstrate empirically that our IPS can produce high-quality samples from varied target distributions, outperforming comparable gradient-free particle systems and competitive with gradient-based alternatives.
We study an extension of the cardinality-constrained knapsack problem wherein each item has a concave piecewise linear utility structure (CCKP), which is motivated by applications such as resource management problems in monitoring and surveillance tasks. Our main contributions are combinatorial algorithms for the offline CCKP and an online version of the CCKP. For the offline problem, we present a fully polynomial-time approximation scheme and show that it can be cast as the maximization of a submodular function with cardinality constraints; the latter property allows us to derive a greedy $(1 - \frac{1}{e})$-approximation algorithm. For the online CCKP in the random order model, we derive a $\frac{10.427}{\alpha}$-competitive algorithm based on $\alpha$-approximation algorithms for the offline CCKP; moreover, we derive stronger guarantees for the cases wherein the cardinality capacity is very small or relatively large. Finally, we investigate the empirical performance of the proposed algorithms in numerical experiments.
Instance segmentation of compound objects in XXL-CT imagery poses a unique challenge in non-destructive testing. This complexity arises from the lack of known reference segmentation labels, limited applicable segmentation tools, as well as partially degraded image quality. To asses recent advancements in the field of machine learning-based image segmentation, the "Instance Segmentation XXL-CT Challenge of a Historic Airplane" was conducted. The challenge aimed to explore automatic or interactive instance segmentation methods for an efficient delineation of the different aircraft components, such as screws, rivets, metal sheets or pressure tubes. We report the organization and outcome of this challenge and describe the capabilities and limitations of the submitted segmentation methods.
While individual robots are becoming increasingly capable, with new sensors and actuators, the complexity of expected missions increased exponentially in comparison. To cope with this complexity, heterogeneous teams of robots have become a significant research interest in recent years. Making effective use of the robots and their unique skills in a team is challenging. Dynamic runtime conditions often make static task allocations infeasible, therefore requiring a dynamic, capability-aware allocation of tasks to team members. To this end, we propose and implement a system that allows a user to specify missions using Bheavior Trees (BTs), which can then, at runtime, be dynamically allocated to the current robot team. The system allows to statically model an individual robot's capabilities within our ros_bt_py BT framework. It offers a runtime auction system to dynamically allocate tasks to the most capable robot in the current team. The system leverages utility values and pre-conditions to ensure that the allocation improves the overall mission execution quality while preventing faulty assignments. To evaluate the system, we simulated a find-and-decontaminate mission with a team of three heterogeneous robots and analyzed the utilization and overall mission times as metrics. Our results show that our system can improve the overall effectiveness of a team while allowing for intuitive mission specification and flexibility in the team composition.
Dimensionality reduction methods, such as principal component analysis (PCA) and factor analysis, are central to many problems in data science. There are, however, serious and well-understood challenges to finding robust low dimensional approximations for data with significant heteroskedastic noise. This paper introduces a relaxed version of Minimum Trace Factor Analysis (MTFA), a convex optimization method with roots dating back to the work of Ledermann in 1940. This relaxation is particularly effective at not overfitting to heteroskedastic perturbations and addresses the commonly cited Heywood cases in factor analysis and the recently identified "curse of ill-conditioning" for existing spectral methods. We provide theoretical guarantees on the accuracy of the resulting low rank subspace and the convergence rate of the proposed algorithm to compute that matrix. We develop a number of interesting connections to existing methods, including HeteroPCA, Lasso, and Soft-Impute, to fill an important gap in the already large literature on low rank matrix estimation. Numerical experiments benchmark our results against several recent proposals for dealing with heteroskedastic noise.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.