亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an optimization-based framework for multicopter trajectory planning subject to geometrical spatial constraints and user-defined dynamic constraints. The basis of the framework is a novel trajectory representation built upon our novel optimality conditions for unconstrained control effort minimization. We design linear-complexity operations on this representation to conduct spatial-temporal deformation under various planning requirements. Smooth maps are utilized to exactly eliminate geometrical constraints in a lightweight fashion. A wide range of state-input constraints are supported by the decoupling of dense constraint evaluation from sparse parameterization, and backward differentiation of flatness map. As a result, the proposed framework transforms a generally constrained multicopter planning problem into an unconstrained optimization that can be solved reliably and efficiently. Our framework bridges the gaps among solution quality, planning frequency and constraint fidelity for a multicopter with limited resources and maneuvering capability. Its generality and robustness are both demonstrated by applications and experiments for different tasks. Extensive simulations and benchmarks are also conducted to show its capability of generating high-quality solutions while retaining the computation speed against other specialized methods by orders of magnitudes. Details and source code of our framework will be freely available at: //zju-fast.com/gcopter.

相關內容

We consider reinforcement learning (RL) in Markov Decision Processes in which an agent repeatedly interacts with an environment that is modeled by a controlled Markov process. At each time step $t$, it earns a reward, and also incurs a cost-vector consisting of $M$ costs. We design learning algorithms that maximize the cumulative reward earned over a time horizon of $T$ time-steps, while simultaneously ensuring that the average values of the $M$ cost expenditures are bounded by agent-specified thresholds $c^{ub}_i,i=1,2,\ldots,M$. The considerations on the cumulative cost expenditures departs from the existing literature, in that the agent now additionally needs to balance the cost expenses in an online manner, while simultaneously performing the exploration-exploitation trade-off that is typically encountered in RL tasks. In order to measure the performance of a reinforcement learning algorithm that satisfies the average cost constraints, we define an $M+1$ dimensional regret vector that is composed of its reward regret, and $M$ cost regrets. The reward regret measures the sub-optimality in the cumulative reward, while the $i$-th component of the cost regret vector is the difference between its $i$-th cumulative cost expense and the expected cost expenditures $Tc^{ub}_i$. We prove that with a high probablity, the regret vector of UCRL-CMDP is upper-bounded as $O\left( S\sqrt{AT^{1.5}\log(T)}\right)$, where $S$ is the number of states, $A$ is the number of actions, and $T$ is the time horizon. We further show how to reduce the regret of a desired subset of the $M$ costs, at the expense of increasing the regrets of rewards and the remaining costs. To the best of our knowledge, ours is the only work that considers non-episodic RL under average cost constraints, and derive algorithms that can~\emph{tune the regret vector} according to the agent's requirements on its cost regrets.

Placing robots outside controlled conditions requires versatile movement representations that allow robots to learn new tasks and adapt them to environmental changes. The introduction of obstacles or the placement of additional robots in the workspace, the modification of the joint range due to faults or range-of-motion constraints are typical cases where the adaptation capabilities play a key role for safely performing the robot's task. Probabilistic movement primitives (ProMPs) have been proposed for representing adaptable movement skills, which are modelled as Gaussian distributions over trajectories. These are analytically tractable and can be learned from a small number of demonstrations. However, both the original ProMP formulation and the subsequent approaches only provide solutions to specific movement adaptation problems, e.g., obstacle avoidance, and a generic, unifying, probabilistic approach to adaptation is missing. In this paper we develop a generic probabilistic framework for adapting ProMPs. We unify previous adaptation techniques, for example, various types of obstacle avoidance, via-points, mutual avoidance, in one single framework and combine them to solve complex robotic problems. Additionally, we derive novel adaptation techniques such as temporally unbound via-points and mutual avoidance. We formulate adaptation as a constrained optimisation problem where we minimise the Kullback-Leibler divergence between the adapted distribution and the distribution of the original primitive while we constrain the probability mass associated with undesired trajectories to be low. We demonstrate our approach on several adaptation problems on simulated planar robot arms and 7-DOF Franka-Emika robots in a dual robot arm setting.

Performing highly agile acrobatic motions with a long flight phase requires perfect timing, high accuracy, and coordination of the whole body motion. To address these challenges, this paper presents a unified timing and trajectory optimization framework for legged robots performing aggressive 3D jumping. In our approach, we firstly utilize an effective optimization framework using simplified rigid body dynamics to solve for contact timings and a reference trajectory of the robot body. The solution of this module is then used to formulate a whole-body trajectory optimization based on the full nonlinear dynamics of the robot. This combination allows us to effectively optimize for contact timings while guaranteeing the accuracy of the jumping trajectory that can be realized in the hardware. We validate the efficiency of the proposed framework on the A1 robot model for various 3D jumping tasks such as double-backflips and double barrel roll off the high altitude of 2m and 0.8m respectively. Experimental validation was also successfully conducted for different 3D jumping motions such as barrel roll from a box or diagonal jumps.

We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution; (ii) optimizing a given objective function. The approach is derivative-free and affine invariant, and is therefore well-suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples.

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.

Adversarial training is among the most effective techniques to improve the robustness of models against adversarial perturbations. However, the full effect of this approach on models is not well understood. For example, while adversarial training can reduce the adversarial risk (prediction error against an adversary), it sometimes increase standard risk (generalization error when there is no adversary). Even more, such behavior is impacted by various elements of the learning problem, including the size and quality of training data, specific forms of adversarial perturbations in the input, model overparameterization, and adversary's power, among others. In this paper, we focus on \emph{distribution perturbing} adversary framework wherein the adversary can change the test distribution within a neighborhood of the training data distribution. The neighborhood is defined via Wasserstein distance between distributions and the radius of the neighborhood is a measure of adversary's manipulative power. We study the tradeoff between standard risk and adversarial risk and derive the Pareto-optimal tradeoff, achievable over specific classes of models, in the infinite data limit with features dimension kept fixed. We consider three learning settings: 1) Regression with the class of linear models; 2) Binary classification under the Gaussian mixtures data model, with the class of linear classifiers; 3) Regression with the class of random features model (which can be equivalently represented as two-layer neural network with random first-layer weights). We show that a tradeoff between standard and adversarial risk is manifested in all three settings. We further characterize the Pareto-optimal tradeoff curves and discuss how a variety of factors, such as features correlation, adversary's power or the width of two-layer neural network would affect this tradeoff.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

In this work, we take a representation learning perspective on hierarchical reinforcement learning, where the problem of learning lower layers in a hierarchy is transformed into the problem of learning trajectory-level generative models. We show that we can learn continuous latent representations of trajectories, which are effective in solving temporally extended and multi-stage problems. Our proposed model, SeCTAR, draws inspiration from variational autoencoders, and learns latent representations of trajectories. A key component of this method is to learn both a latent-conditioned policy and a latent-conditioned model which are consistent with each other. Given the same latent, the policy generates a trajectory which should match the trajectory predicted by the model. This model provides a built-in prediction mechanism, by predicting the outcome of closed loop policy behavior. We propose a novel algorithm for performing hierarchical RL with this model, combining model-based planning in the learned latent space with an unsupervised exploration objective. We show that our model is effective at reasoning over long horizons with sparse rewards for several simulated tasks, outperforming standard reinforcement learning methods and prior methods for hierarchical reasoning, model-based planning, and exploration.

In this work, we present a method for tracking and learning the dynamics of all objects in a large scale robot environment. A mobile robot patrols the environment and visits the different locations one by one. Movable objects are discovered by change detection, and tracked throughout the robot deployment. For tracking, we extend the Rao-Blackwellized particle filter of previous work with birth and death processes, enabling the method to handle an arbitrary number of objects. Target births and associations are sampled using Gibbs sampling. The parameters of the system are then learnt using the Expectation Maximization algorithm in an unsupervised fashion. The system therefore enables learning of the dynamics of one particular environment, and of its objects. The algorithm is evaluated on data collected autonomously by a mobile robot in an office environment during a real-world deployment. We show that the algorithm automatically identifies and tracks the moving objects within 3D maps and infers plausible dynamics models, significantly decreasing the modeling bias of our previous work. The proposed method represents an improvement over previous methods for environment dynamics learning as it allows for learning of fine grained processes.

Current convolutional neural networks algorithms for video object tracking spend the same amount of computation for each object and video frame. However, it is harder to track an object in some frames than others, due to the varying amount of clutter, scene complexity, amount of motion, and object's distinctiveness against its background. We propose a depth-adaptive convolutional Siamese network that performs video tracking adaptively at multiple neural network depths. Parametric gating functions are trained to control the depth of the convolutional feature extractor by minimizing a joint loss of computational cost and tracking error. Our network achieves accuracy comparable to the state-of-the-art on the VOT2016 benchmark. Furthermore, our adaptive depth computation achieves higher accuracy for a given computational cost than traditional fixed-structure neural networks. The presented framework extends to other tasks that use convolutional neural networks and enables trading speed for accuracy at runtime.

北京阿比特科技有限公司