亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce API Pack, a massive multi-programming language dataset containing more than 1 million instruction-API call pairs to improve the API call generation capabilities of large language models. By fine-tuning CodeLlama-13B on 20,000 Python instances from API Pack, we achieved around 10% and 5% higher accuracy compared to GPT-3.5 and GPT-4, respectively, in generating unseen API calls. Fine-tuning on API Pack enables cross-programming language generalization by leveraging a large amount of data in one language and small amounts of data from other languages. Scaling the training data to 1 million instances further improves the model's generalization to new APIs not encountered during training. We open-source the API Pack dataset, trained models, and associated source code at //github.com/zguo0525/API-Pack to facilitate further research.

相關內容

 應用程序接口(簡稱 API),又稱為應用編程接口,就是軟件系統不同組成部分銜接的約定。

Code Language Models (CLMs), particularly those leveraging deep learning, have achieved significant success in code intelligence domain. However, the issue of security, particularly backdoor attacks, is often overlooked in this process. The previous research has focused on designing backdoor attacks for CLMs, but effective defenses have not been adequately addressed. In particular, existing defense methods from natural language processing, when directly applied to CLMs, are not effective enough and lack generality, working well in some models and scenarios but failing in others, thus fall short in consistently mitigating backdoor attacks. To bridge this gap, we first confirm the phenomenon of ``early learning" as a general occurrence during the training of CLMs. This phenomenon refers to that a model initially focuses on the main features of training data but may become more sensitive to backdoor triggers over time, leading to overfitting and susceptibility to backdoor attacks. We then analyze that overfitting to backdoor triggers results from the use of the cross-entropy loss function, where the unboundedness of cross-entropy leads the model to increasingly concentrate on the features of the poisoned data. Based on this insight, we propose a general and effective loss function DeCE (Deceptive Cross-Entropy) by blending deceptive distributions and applying label smoothing to limit the gradient to be bounded, which prevents the model from overfitting to backdoor triggers and then enhances the security of CLMs against backdoor attacks. To verify the effectiveness of our defense method, we select code synthesis tasks as our experimental scenarios. Our experiments across various code synthesis datasets, models, and poisoning ratios demonstrate the applicability and effectiveness of DeCE in enhancing the security of CLMs.

High-resolution inputs enable Large Vision-Language Models (LVLMs) to discern finer visual details, enhancing their comprehension capabilities. To reduce the training and computation costs caused by high-resolution input, one promising direction is to use sliding windows to slice the input into uniform patches, each matching the input size of the well-trained vision encoder. Although efficient, this slicing strategy leads to the fragmentation of original input, i.e., the continuity of contextual information and spatial geometry is lost across patches, adversely affecting performance in cross-patch context perception and position-specific tasks. To overcome these shortcomings, we introduce HiRes-LLaVA, a novel framework designed to efficiently process any size of high-resolution input without altering the original contextual and geometric information. HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compresses the vision tokens based on themselves, preserving the original context and positional information while reducing training overhead. To assess the ability of handling context fragmentation, we construct a new benchmark, EntityGrid-QA, consisting of edge-related and position-related tasks. Our comprehensive experiments demonstrate the superiority of HiRes-LLaVA on both existing public benchmarks and on EntityGrid-QA, particularly on document-oriented tasks, establishing new standards for handling high-resolution inputs.

Large language models (LLM) excel at a variety of natural language processing tasks, yet they struggle to generate personalized content for individuals, particularly in real-world scenarios like scientific writing. Addressing this challenge, we introduce STEP-BACK PROFILING to personalize LLMs by distilling user history into concise profiles, including essential traits and preferences of users. To conduct the experiments, we construct a Personalized Scientific Writing (PSW) dataset to study multi-user personalization. PSW requires the models to write scientific papers given specialized author groups with diverse academic backgrounds. As for the results, we demonstrate the effectiveness of capturing user characteristics via STEP-BACK PROFILING for collaborative writing. Moreover, our approach outperforms the baselines by up to 3.6 points on the general personalization benchmark (LaMP), including 7 personalization LLM tasks. Our ablation studies validate the contributions of different components in our method and provide insights into our task definition. Our dataset and code are available at \url{//github.com/gersteinlab/step-back-profiling}.

Recent advances in machine learning (ML) have spotlighted the pressing need for computing architectures that bridge the gap between memory bandwidth and processing power. The advent of deep neural networks has pushed traditional Von Neumann architectures to their limits due to the high latency and energy consumption costs associated with data movement between the processor and memory for these workloads. One of the solutions to overcome this bottleneck is to perform computation within the main memory through processing-in-memory (PIM), thereby limiting data movement and the costs associated with it. However, DRAM-based PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks and the need for frequent refresh operations. In this work, we introduce OPIMA, a PIM-based ML accelerator, architected within an optical main memory. OPIMA has been designed to leverage the inherent massive parallelism within main memory while performing high-speed, low-energy optical computation to accelerate ML models based on convolutional neural networks. We present a comprehensive analysis of OPIMA to guide design choices and operational mechanisms. Additionally, we evaluate the performance and energy consumption of OPIMA, comparing it with conventional electronic computing systems and emerging photonic PIM architectures. The experimental results show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.

Recent advancements in Large Language Models (LLMs) have demonstrated exceptional capabilities in complex tasks like machine translation, commonsense reasoning, and language understanding. One of the primary reasons for the adaptability of LLMs in such diverse tasks is their in-context learning (ICL) capability, which allows them to perform well on new tasks by simply using a few task samples in the prompt. Despite their effectiveness in enhancing the performance of LLMs on diverse language and tabular tasks, these methods have not been thoroughly explored for their potential to generate post hoc explanations. In this work, we carry out one of the first explorations to analyze the effectiveness of LLMs in explaining other complex predictive models using ICL. To this end, we propose a novel framework, In-Context Explainers, comprising of three novel approaches that exploit the ICL capabilities of LLMs to explain the predictions made by other predictive models. We conduct extensive analysis with these approaches on real-world tabular and text datasets and demonstrate that LLMs are capable of explaining other predictive models similar to state-of-the-art post hoc explainers, opening up promising avenues for future research into LLM-based post hoc explanations of complex predictive models.

Transformers excel in Natural Language Processing (NLP) due to their prowess in capturing long-term dependencies but suffer from exponential resource consumption with increasing sequence lengths. To address these challenges, we propose MCSD model, an efficient language model with linear scaling and fast inference speed. MCSD model leverages diverse feature fusion, primarily through the multi-channel slope and decay (MCSD) block, to robustly represent features. This block comprises slope and decay sections that extract features across diverse temporal receptive fields, facilitating capture of both local and global information. In addition, MCSD block conducts element-wise fusion of diverse features to further enhance the delicate feature extraction capability. For inference, we formulate the inference process into a recurrent representation, slashing space complexity to $O(1)$ and time complexity to $O(N)$ respectively. Our experiments show that MCSD attains higher throughput and lower GPU memory consumption compared to Transformers, while maintaining comparable performance to larger-scale language learning models on benchmark tests. These attributes position MCSD as a promising base for edge deployment and embodied intelligence.

Loop closing is a crucial component in SLAM that helps eliminate accumulated errors through two main steps: loop detection and loop pose correction. The first step determines whether loop closing should be performed, while the second estimates the 6-DoF pose to correct odometry drift. Current methods mostly focus on developing robust descriptors for loop closure detection, often neglecting loop pose estimation. A few methods that do include pose estimation either suffer from low accuracy or incur high computational costs. To tackle this problem, we introduce SGLC, a real-time semantic graph-guided full loop closing method, with robust loop closure detection and 6-DoF pose estimation capabilities. SGLC takes into account the distinct characteristics of foreground and background points. For foreground instances, it builds a semantic graph that not only abstracts point cloud representation for fast descriptor generation and matching but also guides the subsequent loop verification and initial pose estimation. Background points, meanwhile, are exploited to provide more geometric features for scan-wise descriptor construction and stable planar information for further pose refinement. Loop pose estimation employs a coarse-fine-refine registration scheme that considers the alignment of both instance points and background points, offering high efficiency and accuracy. We evaluate the loop closing performance of SGLC through extensive experiments on the KITTI and KITTI-360 datasets, demonstrating its superiority over existing state-of-the-art methods. Additionally, we integrate SGLC into a SLAM system, eliminating accumulated errors and improving overall SLAM performance. The implementation of SGLC will be released at //github.com/nubot-nudt/SGLC.

In this study, we introduce CT-LLM, a 2B large language model (LLM) that illustrates a pivotal shift towards prioritizing the Chinese language in developing LLMs. Uniquely initiated from scratch, CT-LLM diverges from the conventional methodology by primarily incorporating Chinese textual data, utilizing an extensive corpus of 1,200 billion tokens, including 800 billion Chinese tokens, 300 billion English tokens, and 100 billion code tokens. This strategic composition facilitates the model's exceptional proficiency in understanding and processing Chinese, a capability further enhanced through alignment techniques. Demonstrating remarkable performance on the CHC-Bench, CT-LLM excels in Chinese language tasks, and showcases its adeptness in English through SFT. This research challenges the prevailing paradigm of training LLMs predominantly on English corpora and then adapting them to other languages, broadening the horizons for LLM training methodologies. By open-sourcing the full process of training a Chinese LLM, including a detailed data processing procedure with the obtained Massive Appropriate Pretraining Chinese Corpus (MAP-CC), a well-chosen multidisciplinary Chinese Hard Case Benchmark (CHC-Bench), and the 2B-size Chinese Tiny LLM (CT-LLM), we aim to foster further exploration and innovation in both academia and industry, paving the way for more inclusive and versatile language models.

This paper presents a novel approach to Autonomous Vehicle (AV) control through the application of active inference, a theory derived from neuroscience that conceptualizes the brain as a predictive machine. Traditional autonomous driving systems rely heavily on Modular Pipelines, Imitation Learning, or Reinforcement Learning, each with inherent limitations in adaptability, generalization, and computational efficiency. Active inference addresses these challenges by minimizing prediction error (termed "surprise") through a dynamic model that balances perception and action. Our method integrates active inference with deep learning to manage lateral control in AVs, enabling them to perform lane following maneuvers within a simulated urban environment. We demonstrate that our model, despite its simplicity, effectively learns and generalizes from limited data without extensive retraining, significantly reducing computational demands. The proposed approach not only enhances the adaptability and performance of AVs in dynamic scenarios but also aligns closely with human-like driving behavior, leveraging a generative model to predict and adapt to environmental changes. Results from extensive experiments in the CARLA simulator show promising outcomes, outperforming traditional methods in terms of adaptability and efficiency, thereby advancing the potential of active inference in real-world autonomous driving applications.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司