亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The $K$-medoids problem is a challenging combinatorial clustering task, widely used in data analysis applications. While numerous algorithms have been proposed to solve this problem, none of these are able to obtain an exact (globally optimal) solution for the problem in polynomial time. In this paper, we present EKM: a novel algorithm for solving this problem exactly with worst-case $O\left(N^{K+1}\right)$ time complexity. EKM is developed according to recent advances in transformational programming and combinatorial generation, using formal program derivation steps. The derived algorithm is provably correct by construction. We demonstrate the effectiveness of our algorithm by comparing it against various approximate methods on numerous real-world datasets. We show that the wall-clock run time of our algorithm matches the worst-case time complexity analysis on synthetic datasets, clearly outperforming the exponential time complexity of benchmark branch-and-bound based MIP solvers. To our knowledge, this is the first, rigorously-proven polynomial time, practical algorithm for this ubiquitous problem.

相關內容

Fitting's Heyting-valued logic and Heyting-valued modal logic have already been studied from an algebraic viewpoint. In addition to algebraic axiomatizations with the completeness of Fitting's Heyting-valued logic and Heyting-valued modal logic, both topological and coalgebraic dualities have also been developed for algebras of Fitting's Heyting-valued modal logic. Bitopological methods have recently been employed to investigate duality for Fitting's Heyting-valued logic. However, the concepts of bitopology and biVietoris coalgebras are conspicuously absent from the development of dualities for Fitting's many-valued modal logic. With this study, we try to bridge that gap. We develop a bitopological duality for algebras of Fitting's Heyting-valued modal logic. We construct a bi-Vietoris functor on the category $PBS_{\mathcal{L}}$ of $\mathcal{L}$-valued ($\mathcal{L}$ is a Heyting algebra) pairwise Boolean spaces. Finally, we obtain a dual equivalence between categories of biVietoris coalgebras and algebras of Fitting's Heyting-valued modal logic. As a result, we conclude that Fitting's many-valued modal logic is sound and complete with respect to the coalgebras of a biVietoris functor. We discuss the application of this coalgebraic approach to bitopological duality.

Linear principal component analysis (PCA) learns (semi-)orthogonal transformations by orienting the axes to maximize variance. Consequently, it can only identify orthogonal axes whose variances are clearly distinct, but it cannot identify the subsets of axes whose variances are roughly equal. It cannot eliminate the subspace rotational indeterminacy: it fails to disentangle components with equal variances (eigenvalues), resulting, in each eigen subspace, in randomly rotated axes. In this paper, we propose $\sigma$-PCA, a method that (1) formulates a unified model for linear and nonlinear PCA, the latter being a special case of linear independent component analysis (ICA), and (2) introduces a missing piece into nonlinear PCA that allows it to eliminate, from the canonical linear PCA solution, the subspace rotational indeterminacy -- without whitening the inputs. Whitening, a preprocessing step which converts the inputs into unit-variance inputs, has generally been a prerequisite step for linear ICA methods, which meant that conventional nonlinear PCA could not necessarily preserve the orthogonality of the overall transformation, could not directly reduce dimensionality, and could not intrinsically order by variances. We offer insights on the relationship between linear PCA, nonlinear PCA, and linear ICA -- three methods with autoencoder formulations for learning special linear transformations from data, transformations that are (semi-)orthogonal for PCA, and arbitrary unit-variance for ICA. As part of our formulation, nonlinear PCA can be seen as a method that maximizes both variance and statistical independence, lying in the middle between linear PCA and linear ICA, serving as a building block for learning linear transformations that are identifiable.

We introduce a new Langevin dynamics based algorithm, called e-TH$\varepsilon$O POULA, to solve optimization problems with discontinuous stochastic gradients which naturally appear in real-world applications such as quantile estimation, vector quantization, CVaR minimization, and regularized optimization problems involving ReLU neural networks. We demonstrate both theoretically and numerically the applicability of the e-TH$\varepsilon$O POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish non-asymptotic error bounds for e-TH$\varepsilon$O POULA in Wasserstein distances and provide a non-asymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multi-period portfolio optimization, transfer learning in multi-period portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world datasets illustrate the superior empirical performance of e-TH$\varepsilon$O POULA compared to SGLD, TUSLA, ADAM, and AMSGrad in terms of model accuracy.

Finding the maximum size of a Sidon set in $\mathbb{F}_2^t$ is of research interest for more than 40 years. In order to tackle this problem we recall a one-to-one correspondence between sum-free Sidon sets and linear codes with minimum distance greater or equal 5. Our main contribution about codes is a new non-existence result for linear codes with minimum distance 5 based on a sharpening of the Johnson bound. This gives, on the Sidon set side, an improvement of the general upper bound for the maximum size of a Sidon set. Additionally, we characterise maximal Sidon sets, that are those Sidon sets which can not be extended by adding elements without loosing the Sidon property, up to dimension 6 and give all possible sizes for dimension 7 and 8 determined by computer calculations.

Bayesian inference gets its name from *Bayes's theorem*, expressing posterior probabilities for hypotheses about a data generating process as the (normalized) product of prior probabilities and a likelihood function. But Bayesian inference uses all of probability theory, not just Bayes's theorem. Many hypotheses of scientific interest are *composite hypotheses*, with the strength of evidence for the hypothesis dependent on knowledge about auxiliary factors, such as the values of nuisance parameters (e.g., uncertain background rates or calibration factors). Many important capabilities of Bayesian methods arise from use of the law of total probability, which instructs analysts to compute probabilities for composite hypotheses by *marginalization* over auxiliary factors. This tutorial targets relative newcomers to Bayesian inference, aiming to complement tutorials that focus on Bayes's theorem and how priors modulate likelihoods. The emphasis here is on marginalization over parameter spaces -- both how it is the foundation for important capabilities, and how it may motivate caution when parameter spaces are large. Topics covered include the difference between likelihood and probability, understanding the impact of priors beyond merely shifting the maximum likelihood estimate, and the role of marginalization in accounting for uncertainty in nuisance parameters, systematic error, and model misspecification.

When the target of inference is a real-valued function of probability parameters in the k-sample multinomial problem, variance estimation may be challenging. In small samples, methods like the nonparametric bootstrap or delta method may perform poorly. We propose a novel general method in this setting for computing exact p-values and confidence intervals which means that type I error rates are correctly bounded and confidence intervals have at least nominal coverage at all sample sizes. Our method is applicable to any real-valued function of multinomial probabilities, accommodating an arbitrary number of samples with varying category counts. We describe the method and provide an implementation of it in R, with some computational optimization to ensure broad applicability. Simulations demonstrate our method's ability to maintain correct coverage rates in settings where the nonparametric bootstrap fails.

We give a $(1.796+\epsilon)$-approximation for the minimum sum coloring problem on chordal graphs, improving over the previous 3.591-approximation by Gandhi et al. [2005]. To do so, we also design the first polynomial-time approximation scheme for the maximum $k$-colorable subgraph problem in chordal graphs.

In this paper, we study the problem of noisy, convex, zeroth order optimisation of a function $f$ over a bounded convex set $\bar{\mathcal X}\subset \mathbb{R}^d$. Given a budget $n$ of noisy queries to the function $f$ that can be allocated sequentially and adaptively, our aim is to construct an algorithm that returns a point $\hat x\in \bar{\mathcal X}$ such that $f(\hat x)$ is as small as possible. We provide a conceptually simple method inspired by the textbook center of gravity method, but adapted to the noisy and zeroth order setting. We prove that this method is such that the $f(\hat x) - \min_{x\in \bar{\mathcal X}} f(x)$ is of smaller order than $d^2/\sqrt{n}$ up to poly-logarithmic terms. We slightly improve upon existing literature, where to the best of our knowledge the best known rate is in [Lattimore, 2024] is of order $d^{2.5}/\sqrt{n}$, albeit for a more challenging problem. Our main contribution is however conceptual, as we believe that our algorithm and its analysis bring novel ideas and are significantly simpler than existing approaches.

Quantum low-density parity-check codes are a promising candidate for fault-tolerant quantum computing with considerably reduced overhead compared to the surface code. However, the lack of a practical decoding algorithm remains a barrier to their implementation. In this work, we introduce localized statistics decoding, a reliability-guided inversion decoder that is highly parallelizable and applicable to arbitrary quantum low-density parity-check codes. Our approach employs a parallel matrix factorization strategy, which we call on-the-fly elimination, to identify, validate, and solve local decoding regions on the decoding graph. Through numerical simulations, we show that localized statistics decoding matches the performance of state-of-the-art decoders while reducing the runtime complexity for operation in the sub-threshold regime. Importantly, our decoder is more amenable to implementation on specialized hardware, positioning it as a promising candidate for decoding real-time syndromes from experiments.

We investigate perturbations of orthonormal bases of $L^2$ via a composition operator $C_h$ induced by a mapping $h$. We provide a comprehensive characterization of the mapping $h$ required for the perturbed sequence to form an orthonormal or Riesz basis. Restricting our analysis to differentiable mappings, we reveal that all Riesz bases of the given form are induced by bi-Lipschitz mappings. In addition, we discuss implications of these results for approximation theory, highlighting the potential of using bijective neural networks to construct complete sequences with favorable approximation properties.

北京阿比特科技有限公司