Let $f$ be a polynomial of degree $d$ in $n$ variables over a finite field $\mathbb{F}$. The polynomial is said to be unbiased if the distribution of $f(x)$ for a uniform input $x \in \mathbb{F}^n$ is close to the uniform distribution over $\mathbb{F}$, and is called biased otherwise. The polynomial is said to have low rank if it can be expressed as a composition of a few lower degree polynomials. Green and Tao [Contrib. Discrete Math 2009] and Kaufman and Lovett [FOCS 2008] showed that bias implies low rank for fixed degree polynomials over fixed prime fields. This lies at the heart of many tools in higher order Fourier analysis. In this work, we extend this result to all prime fields (of size possibly growing with $n$). We also provide a generalization to nonprime fields in the large characteristic case. However, we state all our applications in the prime field setting for the sake of simplicity of presentation. Using the above generalization to large fields as a starting point, we are also able to settle the list decoding radius of fixed degree Reed-Muller codes over growing fields. The case of fixed size fields was solved by Bhowmick and Lovett [STOC 2015], which resolved a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008]. Here, we show that the list decoding radius is equal the minimum distance of the code for all fixed degrees, even when the field size is possibly growing with $n$. Additionally, we effectively resolve the weight distribution problem for Reed-Muller codes of fixed degree over all fields, first raised in 1977 in the classic textbook by MacWilliams and Sloane [Research Problem 15.1 in Theory of Error Correcting Codes].
The reinforcement learning (RL) problem is rife with sources of non-stationarity, making it a notoriously difficult problem domain for the application of neural networks. We identify a mechanism by which non-stationary prediction targets can prevent learning progress in deep RL agents: \textit{capacity loss}, whereby networks trained on a sequence of target values lose their ability to quickly update their predictions over time. We demonstrate that capacity loss occurs in a range of RL agents and environments, and is particularly damaging to performance in sparse-reward tasks. We then present a simple regularizer, Initial Feature Regularization (InFeR), that mitigates this phenomenon by regressing a subspace of features towards its value at initialization, leading to significant performance improvements in sparse-reward environments such as Montezuma's Revenge. We conclude that preventing capacity loss is crucial to enable agents to maximally benefit from the learning signals they obtain throughout the entire training trajectory.
We study a new two-time-scale stochastic gradient method for solving optimization problems, where the gradients are computed with the aid of an auxiliary variable under samples generated by time-varying Markov random processes parameterized by the underlying optimization variable. These time-varying samples make gradient directions in our update biased and dependent, which can potentially lead to the divergence of the iterates. In our two-time-scale approach, one scale is to estimate the true gradient from these samples, which is then used to update the estimate of the optimal solution. While these two iterates are implemented simultaneously, the former is updated "faster" (using bigger step sizes) than the latter (using smaller step sizes). Our first contribution is to characterize the finite-time complexity of the proposed two-time-scale stochastic gradient method. In particular, we provide explicit formulas for the convergence rates of this method under different structural assumptions, namely, strong convexity, convexity, the Polyak-Lojasiewicz condition, and general non-convexity. We apply our framework to two problems in control and reinforcement learning. First, we look at the standard online actor-critic algorithm over finite state and action spaces and derive a convergence rate of O(k^(-2/5)), which recovers the best known rate derived specifically for this problem. Second, we study an online actor-critic algorithm for the linear-quadratic regulator and show that a convergence rate of O(k^(-2/3)) is achieved. This is the first time such a result is known in the literature. Finally, we support our theoretical analysis with numerical simulations where the convergence rates are visualized.
Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.
We introduce a new distortion measure for point processes called functional-covering distortion. It is inspired by intensity theory and is related to both the covering of point processes and logarithmic loss distortion. We obtain the distortion-rate function with feedforward under this distortion measure for a large class of point processes. For Poisson processes, the rate-distortion function is obtained under a general condition called constrained functional-covering distortion, of which both covering and functional-covering are special cases. Also for Poisson processes, we characterize the rate-distortion region for a two-encoder CEO problem and show that feedforward does not enlarge this region.
A partial orientation $\vec{H}$ of a graph $G$ is a weak $r$-guidance system if for any two vertices at distance at most $r$ in $G$, there exists a shortest path $P$ between them such that $\vec{H}$ directs all but one edge in $P$ towards this edge. In case $\vec{H}$ has bounded maximum outdegree, this gives an efficient representation of shortest paths of length at most $r$ in $G$. We show that graphs from many natural graph classes admit such weak guidance systems, and study the algorithmic aspects of this notion.
Certain simplicial complexes are used to construct a subset $D$ of $\mathbb{F}_{2^n}^m$ and $D$, in turn, defines the linear code $C_{D}$ over $\mathbb{F}_{2^n}$ that consists of $(v\cdot d)_{d\in D}$ for $v\in \mathbb{F}_{2^n}^m$. Here we deal with the case $n=3$, that is, when $C_{D}$ is an octanary code. We establish a relation between $C_{D}$ and its binary subfield code $C_{D}^{(2)}$ with the help of a generator matrix. For a given length and dimension, a code is called distance optimal if it has the highest possible distance. With respect to the Griesmer bound, five infinite families of distance optimal codes are obtained, and sufficient conditions for certain linear codes to be minimal are established.
We propose a novel concise function representation for graphical models, a central theoretical framework that provides the basis for many reasoning tasks. We then show how we exploit our concise representation based on deterministic finite state automata within Bucket Elimination (BE), a general approach based on the concept of variable elimination that can be used to solve many inference and optimisation tasks, such as most probable explanation and constrained optimisation. We denote our version of BE as FABE. By using our concise representation within FABE, we dramatically improve the performance of BE in terms of runtime and memory requirements. Results achieved by comparing FABE with state of the art approaches for most probable explanation (i.e., recursive best-first and structured message passing) and constrained optimisation (i.e., CPLEX, GUROBI, and toulbar2) following an established methodology confirm the efficacy of our concise function representation, showing runtime improvements of up to 5 orders of magnitude in our tests.
The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.
Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured in Makur, Mossel, Polyanskiy (ISIT 2021).
This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.