Stochastic Primal-Dual Hybrid Gradient (SPDHG) is an algorithm proposed by Chambolle et al. (2018) to efficiently solve a wide class of nonsmooth large-scale optimization problems. In this paper we contribute to its theoretical foundations and prove its almost sure convergence for convex but neither necessarily strongly convex nor smooth functionals, as well as for any random sampling. In addition, we study SPDHG for parallel Magnetic Resonance Imaging reconstruction, where data from different coils are randomly selected at each iteration. We apply SPDHG using a wide range of random sampling methods and compare its performance across a range of settings, including mini-batch size and step size parameters. We show that the sampling can significantly affect the convergence speed of SPDHG and for many cases an optimal sampling can be identified.
Best possible self (BPS) is a positive psychological intervention shown to enhance well-being which involves writing a description of an ideal future scenario. This paper presents a comparison of psychophysiological effects of a BPS activity that has been adapted for classroom settings and a time-matched control activity (NA). Thirty-three undergraduate students participated in the study that assessed state anxiety (State-Trait Anxiety Inventory, STAI), affect (Affective Slider, AS), and cardiac vagal activity (heart-rate variability, HRV) as an indicator of self-regulatory resource usage, at three time periods (PRE, DURING, POST). Results show that BPS led to a significantly greater increase in positive valence (DURING) and overall higher levels of cardiac vagal activity (HRV) compared to NA. These findings suggest that BPS has promising characteristics as a self-regulatory technique aimed at fostering positive affect and positively impacting self-regulatory resources. As BPS does not require expert knowledge nor specialized technology to administer, it may be a suitable activity for educators to use when teaching and having students practice self-regulation. This study presents evidence collected in a replicable multimodal approach of the self-regulatory effects of a brief BPS activity on undergraduate students.
We study the Euler scheme for scalar non-autonomous stochastic differential equations, whose diffusion coefficient is not globally Lipschitz but a fractional power of a globally Lipschitz function. We analyse the strong error and establish a criterion, which relates the convergence order of the Euler scheme to an inverse moment condition for the diffusion coefficient. Our result in particular applies to Cox-Ingersoll-Ross-, Chan-Karolyi-Longstaff-Sanders- or Wright-Fisher-type stochastic differential equations and thus provides a unifying framework.
It is well-known that a multilinear system with a nonsingular M-tensor and a positive right-hand side has a unique positive solution. Tensor splitting methods generalizing the classical iterative methods for linear systems have been proposed for finding the unique positive solution. The Alternating Anderson-Richardson (AAR) method is an effective method to accelerate the classical iterative methods. In this study, we apply the idea of AAR for finding the unique positive solution quickly. We first present a tensor Richardson method based on tensor regular splittings, then apply Anderson acceleration to the tensor Richardson method and derive a tensor Anderson-Richardson method, finally, we periodically employ the tensor Anderson-Richardson method within the tensor Richardson method and propose a tensor AAR method. Numerical experiments show that the proposed method is effective in accelerating tensor splitting methods.
We propose a Lawson-time-splitting extended Fourier pseudospectral (LTSeFP) method for the numerical integration of the Gross-Pitaevskii equation with time-dependent potential that is of low regularity in space. For the spatial discretization of low regularity potential, we use an extended Fourier pseudospectral (eFP) method, i.e., we compute the discrete Fourier transform of the low regularity potential in an extended window. For the temporal discretization, to efficiently implement the eFP method for time-dependent low regularity potential, we combine the standard time-splitting method with a Lawson-type exponential integrator to integrate potential and nonlinearity differently. The LTSeFP method is both accurate and efficient: it achieves first-order convergence in time and optimal-order convergence in space in $L^2$-norm under low regularity potential, while the computational cost is comparable to the standard time-splitting Fourier pseudospectral method. Theoretically, we also prove such convergence orders for a large class of spatially low regularity time-dependent potential. Extensive numerical results are reported to confirm the error estimates and to demonstrate the superiority of our method.
The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, in the presented examples, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.
We study knowable informational dependence between empirical questions, modeled as continuous functional dependence between variables in a topological setting. We also investigate epistemic independence in topological terms and show that it is compatible with functional (but non-continuous) dependence. We then proceed to study a stronger notion of knowability based on uniformly continuous dependence. On the technical logical side, we determine the complete logics of languages that combine general functional dependence, continuous dependence, and uniformly continuous dependence.
This paper deals with the derivation of Non-Intrusive Reduced Basis (NIRB) techniques for sensitivity analysis, more specifically the direct and adjoint state methods. For highly complex parametric problems, these two approaches may become too costly. To reduce computational times, Proper Orthogonal Decomposition (POD) and Reduced Basis Methods (RBMs) have already been investigated. The majority of these algorithms are however intrusive in the sense that the High-Fidelity (HF) code must be modified. To address this issue, non-intrusive strategies are employed. The NIRB two-grid method uses the HF code solely as a ``black-box'', requiring no code modification. Like other RBMs, it is based on an offline-online decomposition. The offline stage is time-consuming, but it is only executed once, whereas the online stage is significantly less expensive than an HF evaluation. In this paper, we propose new NIRB two-grid algorithms for both the direct and adjoint state methods. On the direct method, we prove on a classical model problem, the heat equation, that HF evaluations of sensitivities reach an optimal convergence rate in $L^{\infty}(0,T;H^1(\Omega))$, and then establish that these rates are recovered by the proposed NIRB approximation. These results are supported by numerical simulations. We then numerically demonstrate that a Gaussian process regression can be used to approximate the projection coefficients of the NIRB two-grid method. This further reduces the computational costs of the online step while only computing a coarse solution of the initial problem. All numerical results are run with the model problem as well as a more complex problem, namely the Brusselator system.
We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.
Nurmuhammad et al. developed the Sinc-Nystr\"{o}m methods for initial value problems in which the solutions exhibit exponential decay end behavior. In these methods, the Single-Exponential (SE) transformation or the Double-Exponential (DE) transformation is combined with the Sinc approximation. Hara and Okayama improved on these transformations to attain a better convergence rate, which was later supported by theoretical error analyses. However, these methods have a computational drawback owing to the inclusion of a special function in the basis functions. To address this issue, Okayama and Hara proposed Sinc-collocation methods, which do not include any special function in the basis functions. This study conducts error analyses of these methods.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.