This paper is concerned with the regularity of solutions to parabolic evolution equations. Special attention is paid to the smoothness in the specific anisotropic scale $\ B^{r\mathbf{a}}_{\tau,\tau}, \ \frac{1}{\tau}=\frac{r}{d}+\frac{1}{p}\ $ of Besov spaces where $\mathbf{a}$ measures the anisotropy. The regularity in these spaces determines the approximation order that can be achieved by fully space-time adaptive approximation schemes. In particular, we show that for the heat equation our results significantly improve previous results by Aimar and Gomez [3].
Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107]. The convergence results currently found in literature only consider H^1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, Numerical analysis of a topology optimization problem for Stokes flow, arXiv preprint arXiv:2102.10408, (2021)]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
Fractional Gaussian fields provide a rich class of spatial models and have a long history of applications in multiple branches of science. However, estimation and inference for fractional Gaussian fields present significant challenges. This book chapter investigates the use of the fractional Laplacian differencing on regular lattices to approximate to continuum fractional Gaussian fields. Emphasis is given on model based geostatistics and likelihood based computations. For a certain range of the fractional parameter, we demonstrate that there is considerable agreement between the continuum models and their lattice approximations. For that range, the parameter estimates and inferences about the continuum fractional Gaussian fields can be derived from the lattice approximations. Interestingly, regular lattice approximations facilitate fast matrix-free computations and enable anisotropic representations. We illustrate the usefulness of lattice approximations via simulation studies and by analyzing sea surface temperature on the Indian Ocean.
This paper is devoted to the numerical analysis of a piecewise constant discontinuous Galerkin method for time fractional subdiffusion problems. The regularity of weak solution is firstly established by using variational approach and Mittag-Leffler function. Then several optimal error estimates are derived with low regularity data. Finally, numerical experiments are conducted to verify the theoretical results.
The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations
The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.
We study the computational complexity of two hard problems on determinantal point processes (DPPs). One is maximum a posteriori (MAP) inference, i.e., to find a principal submatrix having the maximum determinant. The other is probabilistic inference on exponentiated DPPs (E-DPPs), which can sharpen or weaken the diversity preference of DPPs with an exponent parameter $p$. We present several complexity-theoretic hardness results that explain the difficulty in approximating MAP inference and the normalizing constant for E-DPPs. We first prove that unconstrained MAP inference for an $n \times n$ matrix is $\textsf{NP}$-hard to approximate within a factor of $2^{\beta n}$, where $\beta = 10^{-10^{13}} $. This result improves upon the best-known inapproximability factor of $(\frac{9}{8}-\epsilon)$, and rules out the existence of any polynomial-factor approximation algorithm assuming $\textsf{P} \neq \textsf{NP}$. We then show that log-determinant maximization is $\textsf{NP}$-hard to approximate within a factor of $\frac{5}{4}$ for the unconstrained case and within a factor of $1+10^{-10^{13}}$ for the size-constrained monotone case. In particular, log-determinant maximization does not admit a polynomial-time approximation scheme unless $\textsf{P} = \textsf{NP}$. As a corollary of the first result, we demonstrate that the normalizing constant for E-DPPs of any (fixed) constant exponent $p \geq \beta^{-1} = 10^{10^{13}}$ is $\textsf{NP}$-hard to approximate within a factor of $2^{\beta pn}$, which is in contrast to the case of $p \leq 1$ admitting a fully polynomial-time randomized approximation scheme.
T. Borrvall and J. Petersson [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107] developed the first model for topology optimization of fluids in Stokes flow. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this work, we prove novel regularity results and extend their numerical analysis. In particular, given an isolated local minimizer to the infinite-dimensional problem, we show that there exists a sequence of finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to it. We also provide the first numerical investigation into convergence rates.
In this letter we compare the behaviour of standard Virtual Element Methods (VEM) and stabilization free Enlarged Enhancement Virtual Element Methods (E$^2$VEM) with the focus on some elliptic test problems whose solution and diffusivity tensor are characterized by anisotropies. Results show that the possibility to avoid an arbitrary stabilizing part, offered by E$^2$VEM methods, can reduce the magnitude of the error on general polygonal meshes and help convergence.
Bootstrap Your Own Latent (BYOL) introduced an approach to self-supervised learning avoiding the contrastive paradigm and subsequently removing the computational burden of negative sampling associated with such methods. However, we empirically find that the image representations produced under the BYOL's self-distillation paradigm are poorly distributed in representation space compared to contrastive methods. This work empirically demonstrates that feature diversity enforced by contrastive losses is beneficial to image representation uniformity when employed in BYOL, and as such, provides greater inter-class representation separability. Additionally, we explore and advocate the use of regularization methods, specifically the layer-wise minimization of hyperspherical energy (i.e. maximization of entropy) of network weights to encourage representation uniformity. We show that directly optimizing a measure of uniformity alongside the standard loss, or regularizing the networks of the BYOL architecture to minimize the hyperspherical energy of neurons can produce more uniformly distributed and therefore better performing representations for downstream tasks.
We consider Gaussian measures $\mu, \tilde{\mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2\beta}$ resp. $\tilde{A}^{-2\tilde{\beta}}$, and derive necessary and sufficient conditions on $A, \tilde{A}$ and $\beta, \tilde{\beta} > 0$ for I. equivalence of the measures $\mu$ and $\tilde{\mu}$, and II. uniform asymptotic optimality of linear predictions for $\mu$ based on the misspecified measure $\tilde{\mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Mat\'ern Gaussian random fields, where $A$ and $\tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $\mathcal{D}\subset\mathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Mat\'ern fields.