亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blood pressure (BP) is one of the most influential bio-markers for cardiovascular diseases and stroke; therefore, it needs to be regularly monitored to diagnose and prevent any advent of medical complications. Current cuffless approaches to continuous BP monitoring, though non-invasive and unobtrusive, involve explicit feature engineering surrounding fingertip Photoplethysmogram (PPG) signals. To circumvent this, we present an end-to-end deep learning solution, BP-Net, that uses PPG waveform to estimate Systolic BP (SBP), Mean Average Pressure (MAP), and Diastolic BP (DBP) through intermediate continuous Arterial BP (ABP) waveform. Under the terms of the British Hypertension Society (BHS) standard, BP-Net achieves Grade A for DBP and MAP estimation and Grade B for SBP estimation. BP-Net also satisfies Advancement of Medical Instrumentation (AAMI) criteria for DBP and MAP estimation and achieves Mean Absolute Error (MAE) of 5.16 mmHg and 2.89 mmHg for SBP and DBP, respectively. Further, we establish the ubiquitous potential of our approach by deploying BP-Net on a Raspberry Pi 4 device and achieve 4.25 ms inference time for our model to translate the PPG waveform to ABP waveform.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Many problems in computational science and engineering can be described in terms of approximating a smooth function of $d$ variables, defined over an unknown domain of interest $\Omega\subset \mathbb{R}^d$, from sample data. Here both the curse of dimensionality ($d\gg 1$) and the lack of domain knowledge with $\Omega$ potentially irregular and/or disconnected are confounding factors for sampling-based methods. Na\"{i}ve approaches often lead to wasted samples and inefficient approximation schemes. For example, uniform sampling can result in upwards of 20\% wasted samples in some problems. In surrogate model construction in computational uncertainty quantification (UQ), the high cost of computing samples needs a more efficient sampling procedure. In the last years, methods for computing such approximations from sample data have been studied in the case of irregular domains. The advantages of computing sampling measures depending on an approximation space $P$ of $\dim(P)=N$ have been shown. In particular, such methods confer advantages such as stability and well-conditioning, with $\mathcal{O}(N\log(N))$ as sample complexity. The recently-proposed adaptive sampling for general domains (ASGD) strategy is one method to construct these sampling measures. The main contribution of this paper is to improve ASGD by adaptively updating the sampling measures over unknown domains. We achieve this by first introducing a general domain adaptivity strategy (GDAS), which approximates the function and domain of interest from sample points. Second, we propose adaptive sampling for unknown domains (ASUD), which generates sampling measures over a domain that may not be known in advance. Then, we derive least squares techniques for polynomial approximation on unknown domains. Numerical results show that the ASUD approach can reduce the computational cost by as 50\% when compared with uniform sampling.

In this paper, a machine learning based approach is introduced to estimate Pendubot angular position from its captured images. Initially, a baseline algorithm is introduced to estimate the angle using conventional image processing technique. The baseline algorithm performs well for the cases that the Pendubot is not moving fast. However, when moving quickly due to a free fall, the Pendubot appears as a blurred object in the captured image in a way that the baseline algorithm fails to estimate the angle. Consequently, a Deep Neural Network (DNN) based algorithm is introduced to cope with this challenge. The approach relies on the concept of transfer learning to allow the training of the DNN on a very small fine-tuning dataset. The base algorithm is used to create the ground truth labels of the fine-tuning dataset. Experimental results on the held-out evaluation set show that the proposed approach achieves a median absolute error of 0.02 and 0.06 degrees for the sharp and blurry images respectively.

Binary neural networks (BNNs) represent original full-precision weights and activations into 1-bit with sign function. Since the gradient of the conventional sign function is almost zero everywhere which cannot be used for back-propagation, several attempts have been proposed to alleviate the optimization difficulty by using approximate gradient. However, those approximations corrupt the main direction of factual gradient. To this end, we propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs, namely frequency domain approximation (FDA). The proposed approach does not affect the low-frequency information of the original sign function which occupies most of the overall energy, and high-frequency coefficients will be ignored to avoid the huge computational overhead. In addition, we embed a noise adaptation module into the training phase to compensate the approximation error. The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy. Code will be available at \textit{//gitee.com/mindspore/models/tree/master/research/cv/FDA-BNN}.

Click-through rate (CTR) estimation plays as a core function module in various personalized online services, including online advertising, recommender systems, and web search etc. From 2015, the success of deep learning started to benefit CTR estimation performance and now deep CTR models have been widely applied in many industrial platforms. In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks. First, we take a review of the transfer from shallow to deep CTR models and explain why going deep is a necessary trend of development. Second, we concentrate on explicit feature interaction learning modules of deep CTR models. Then, as an important perspective on large platforms with abundant user histories, deep behavior models are discussed. Moreover, the recently emerged automated methods for deep CTR architecture design are presented. Finally, we summarize the survey and discuss the future prospects of this field.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

Deep reinforcement learning (RL) has achieved many recent successes, yet experiment turn-around time remains a key bottleneck in research and in practice. We investigate how to optimize existing deep RL algorithms for modern computers, specifically for a combination of CPUs and GPUs. We confirm that both policy gradient and Q-value learning algorithms can be adapted to learn using many parallel simulator instances. We further find it possible to train using batch sizes considerably larger than are standard, without negatively affecting sample complexity or final performance. We leverage these facts to build a unified framework for parallelization that dramatically hastens experiments in both classes of algorithm. All neural network computations use GPUs, accelerating both data collection and training. Our results include using an entire DGX-1 to learn successful strategies in Atari games in mere minutes, using both synchronous and asynchronous algorithms.

Deep learning (DL) is a high dimensional data reduction technique for constructing high-dimensional predictors in input-output models. DL is a form of machine learning that uses hierarchical layers of latent features. In this article, we review the state-of-the-art of deep learning from a modeling and algorithmic perspective. We provide a list of successful areas of applications in Artificial Intelligence (AI), Image Processing, Robotics and Automation. Deep learning is predictive in its nature rather then inferential and can be viewed as a black-box methodology for high-dimensional function estimation.

In recent years, deep learning has shown performance breakthroughs in many applications, such as image detection, image segmentation, pose estimation, and speech recognition. However, this comes with a major concern: deep networks have been found to be vulnerable to adversarial examples. Adversarial examples are slightly modified inputs that are intentionally designed to cause a misclassification by the model. In the domains of images and speech, the modifications are so small that they are not seen or heard by humans, but nevertheless greatly affect the classification of the model. Deep learning models have been successfully applied to malware detection. In this domain, generating adversarial examples is not straightforward, as small modifications to the bytes of the file could lead to significant changes in its functionality and validity. We introduce a novel loss function for generating adversarial examples specifically tailored for discrete input sets, such as executable bytes. We modify malicious binaries so that they would be detected as benign, while preserving their original functionality, by injecting a small sequence of bytes (payload) in the binary file. We applied this approach to an end-to-end convolutional deep learning malware detection model and show a high rate of detection evasion. Moreover, we show that our generated payload is robust enough to be transferable within different locations of the same file and across different files, and that its entropy is low and similar to that of benign data sections.

From only positive (P) and unlabeled (U) data, a binary classifier could be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, empirical risks on training data will go negative, and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning: when getting minimized, it is more robust against overfitting, and thus we are able to use very flexible models (such as deep neural networks) given limited P data. Moreover, we analyze the bias, consistency, and mean-squared-error reduction of the proposed risk estimator, and bound the estimation error of the resulting empirical risk minimizer. Experiments demonstrate that our risk estimator fixes the overfitting problem of its unbiased counterparts.

北京阿比特科技有限公司