亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum copy protection, introduced by Aaronson, enables giving out a quantum program-description that cannot be meaningfully duplicated. Despite over a decade of study, copy protection is only known to be possible for a very limited class of programs. As our first contribution, we show how to achieve "best-possible" copy protection for all programs. We do this by introducing quantum state indistinguishability obfuscation (qsiO), a notion of obfuscation for quantum descriptions of classical programs. We show that applying qsiO to a program immediately achieves best-possible copy protection. Our second contribution is to show that, assuming injective one-way functions exist, qsiO is concrete copy protection for a large family of puncturable programs -- significantly expanding the class of copy-protectable programs. A key tool in our proof is a new variant of unclonable encryption (UE) that we call coupled unclonable encryption (cUE). While constructing UE in the standard model remains an important open problem, we are able to build cUE from one-way functions. If we additionally assume the existence of UE, then we can further expand the class of puncturable programs for which qsiO is copy protection. Finally, we construct qsiO relative to an efficient quantum oracle.

相關內容

Current UTXO-based smart contracts face an efficiency bottleneck, requiring any transaction sent to a contract to specify the entire updated contract state. This requirement becomes particularly burdensome when the contract state contains dynamic data structures, such as maps, which are needed in many use cases for tracking users interactions with the contract. The problem is twofold: on the one hand, a large state in transactions implies a large transaction fee; on the other hand, a large centralized state is detrimental to the parallelization of transactions, which should be one of the main selling points of UTXO-based blockchains compared to account-based ones. We propose a technique to efficiently execute smart contracts on an extended UTXO blockchain, which allows the contract state to be distributed across multiple UTXOs. In this way, transactions only need to specify the part of the state they need to access, reducing their size (and fees). We also show how to exploit our model to parallelize the validation of transactions on multi-core CPUs. We implement our technique and provide an empirical validation of its effectiveness.

Large multimodal models such as Stable Diffusion can generate, detect, and classify new visual concepts after fine-tuning just a single word embedding. Do models learn similar words for the same concepts (i.e. <orange-cat> = orange + cat)? We conduct a large-scale analysis on three state-of-the-art models in text-to-image generation, open-set object detection, and zero-shot classification, and find that new word embeddings are model-specific and non-transferable. Across 4,800 new embeddings trained for 40 diverse visual concepts on four standard datasets, we find perturbations within an $\epsilon$-ball to any prior embedding that generate, detect, and classify an arbitrary concept. When these new embeddings are spliced into new models, fine-tuning that targets the original model is lost. We show popular soft prompt-tuning approaches find these perturbative solutions when applied to visual concept learning tasks, and embeddings for visual concepts are not transferable. Code for reproducing our work is available at: //visual-words.github.io.

Large Language Models (LLMs) are widely used in Software Engineering (SE) for various tasks, including generating code, designing and documenting software, adding code comments, reviewing code, and writing test scripts. However, creating test scripts or automating test cases demands test suite documentation that comprehensively covers functional requirements. Such documentation must enable thorough testing within a constrained scope and timeframe, particularly as requirements and user demands evolve. This article centers on generating user requirements as epics and high-level user stories and crafting test case scenarios based on these stories. It introduces a web-based software tool that employs an LLM-based agent and prompt engineering to automate the generation of test case scenarios against user requirements.

Diffusion models have become the most popular approach to deep generative modeling of images, largely due to their empirical performance and reliability. From a theoretical standpoint, a number of recent works~\cite{chen2022,chen2022improved,benton2023linear} have studied the iteration complexity of sampling, assuming access to an accurate diffusion model. In this work, we focus on understanding the \emph{sample complexity} of training such a model; how many samples are needed to learn an accurate diffusion model using a sufficiently expressive neural network? Prior work~\cite{BMR20} showed bounds polynomial in the dimension, desired Total Variation error, and Wasserstein error. We show an \emph{exponential improvement} in the dependence on Wasserstein error and depth, along with improved dependencies on other relevant parameters.

Soft grippers, with their inherent compliance and adaptability, show advantages for delicate and versatile manipulation tasks in robotics. This paper presents a novel approach to underactuated control of multiple soft actuators, specifically focusing on the synchronization of soft fingers within a soft gripper. Utilizing a single syringe pump as the actuation mechanism, we address the challenge of coordinating multiple degrees of freedom of a compliant system. The theoretical framework applies concepts from stable inversion theory, adapting them to the unique dynamics of the underactuated soft gripper. Through meticulous mechatronic system design and controller synthesis, we demonstrate both in simulation and experimentation the efficacy and applicability of our approach in achieving precise and synchronized manipulation tasks. Our findings not only contribute to the advancement of soft robot control but also offer practical insights into the design and control of underactuated systems for real-world applications.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司