亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce HEADS-UP, the first egocentric dataset collected from head-mounted cameras, designed specifically for trajectory prediction in blind assistance systems. With the growing population of blind and visually impaired individuals, the need for intelligent assistive tools that provide real-time warnings about potential collisions with dynamic obstacles is becoming critical. These systems rely on algorithms capable of predicting the trajectories of moving objects, such as pedestrians, to issue timely hazard alerts. However, existing datasets fail to capture the necessary information from the perspective of a blind individual. To address this gap, HEADS-UP offers a novel dataset focused on trajectory prediction in this context. Leveraging this dataset, we propose a semi-local trajectory prediction approach to assess collision risks between blind individuals and pedestrians in dynamic environments. Unlike conventional methods that separately predict the trajectories of both the blind individual (ego agent) and pedestrians, our approach operates within a semi-local coordinate system, a rotated version of the camera's coordinate system, facilitating the prediction process. We validate our method on the HEADS-UP dataset and implement the proposed solution in ROS, performing real-time tests on an NVIDIA Jetson GPU through a user study. Results from both dataset evaluations and live tests demonstrate the robustness and efficiency of our approach.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

In this paper, we examine the impact of lexicalization on Question Answering over Linked Data (QALD). It is well known that one of the key challenges in interpreting natural language questions with respect to SPARQL lies in bridging the lexical gap, that is mapping the words in the query to the correct vocabulary elements. We argue in this paper that lexicalization, that is explicit knowledge about the potential interpretations of a word with respect to the given vocabulary, significantly eases the task and increases the performance of QA systems. Towards this goal, we present a compositional QA system that can leverage explicit lexical knowledge in a compositional manner to infer the meaning of a question in terms of a SPARQL query. We show that such a system, given lexical knowledge, has a performance well beyond current QA systems, achieving up to a $35.8\%$ increase in the micro $F_1$ score compared to the best QA system on QALD-9. This shows the importance and potential of including explicit lexical knowledge. In contrast, we show that LLMs have limited abilities to exploit lexical knowledge, with only marginal improvements compared to a version without lexical knowledge. This shows that LLMs have no ability to compositionally interpret a question on the basis of the meaning of its parts, a key feature of compositional approaches. Taken together, our work shows new avenues for QALD research, emphasizing the importance of lexicalization and compositionality.

In this paper, we seek to learn a robot policy guaranteed to satisfy state constraints. To encourage constraint satisfaction, existing RL algorithms typically rely on Constrained Markov Decision Processes and discourage constraint violations through reward shaping. However, such soft constraints cannot offer verifiable safety guarantees. To address this gap, we propose POLICEd RL, a novel RL algorithm explicitly designed to enforce affine hard constraints in closed-loop with a black-box environment. Our key insight is to force the learned policy to be affine around the unsafe set and use this affine region as a repulsive buffer to prevent trajectories from violating the constraint. We prove that such policies exist and guarantee constraint satisfaction. Our proposed framework is applicable to both systems with continuous and discrete state and action spaces and is agnostic to the choice of the RL training algorithm. Our results demonstrate the capacity of POLICEd RL to enforce hard constraints in robotic tasks while significantly outperforming existing methods.

In this paper, we explore a multi-task semantic communication (SemCom) system for distributed sources, extending the existing focus on collaborative single-task execution. We build on the cooperative multi-task processing introduced in [1], which divides the encoder into a common unit (CU) and multiple specific units (SUs). While earlier studies in multi-task SemCom focused on full observation settings, our research explores a more realistic case where only distributed partial observations are available, such as in a production line monitored by multiple sensing nodes. To address this, we propose an SemCom system that supports multi-task processing through cooperation on the transmitter side via split structure and collaboration on the receiver side. We have used an information-theoretic perspective with variational approximations for our end-to-end data-driven approach. Simulation results demonstrate that the proposed cooperative and collaborative multi-task (CCMT) SemCom system significantly improves task execution accuracy, particularly in complex datasets, if the noise introduced from the communication channel is not limiting the task performance too much. Our findings contribute to a more general SemCom framework capable of handling distributed sources and multiple tasks simultaneously, advancing the applicability of SemCom systems in real-world scenarios.

In this paper we present a multi-adapter retrieval augmented generation system (MARAGS) for Meta's Comprehensive RAG (CRAG) competition for KDD CUP 2024. CRAG is a question answering dataset contains 3 different subtasks aimed at realistic question and answering RAG related tasks, with a diverse set of question topics, question types, time dynamic answers, and questions featuring entities of varying popularity. Our system follows a standard setup for web based RAG, which uses processed web pages to provide context for an LLM to produce generations, while also querying API endpoints for additional information. MARAGS also utilizes multiple different adapters to solve the various requirements for these tasks with a standard cross-encoder model for ranking candidate passages relevant for answering the question. Our system achieved 2nd place for Task 1 as well as 3rd place on Task 2.

We present a novel autonomous driving framework, DualAD, designed to imitate human reasoning during driving. DualAD comprises two layers: a rule-based motion planner at the bottom layer that handles routine driving tasks requiring minimal reasoning, and an upper layer featuring a rule-based text encoder that converts driving scenarios from absolute states into text description. This text is then processed by a large language model (LLM) to make driving decisions. The upper layer intervenes in the bottom layer's decisions when potential danger is detected, mimicking human reasoning in critical situations. Closed-loop experiments demonstrate that DualAD, using a zero-shot pre-trained model, significantly outperforms rule-based motion planners that lack reasoning abilities. Our experiments also highlight the effectiveness of the text encoder, which considerably enhances the model's scenario understanding. Additionally, the integrated DualAD model improves with stronger LLMs, indicating the framework's potential for further enhancement. Code and benchmarks are available at github.com/TUM-AVS/DualAD.

In this paper, we propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture. By exploiting the LNN topology's symmetry, we optimize quantum circuit compilation for High Local Connectivity, Sparse Full Connectivity (HLC-SFC) algorithms like Quantum Approximate Optimization Algorithm (QAOA) and Quantum Fourier Transform (QFT). We also utilize dangling qubits to minimize non-local interactions and reduce SWAP gates. Our approach significantly decreases compilation time, gate count, and circuit depth, improving scalability and robustness for large-scale quantum computations.

Data missingness is a practical challenge of sustained interest to the scientific community. In this paper, we present Shades-of-Null, an evaluation suite for responsible missing value imputation. Our work is novel in two ways (i) we model realistic and socially-salient missingness scenarios that go beyond Rubin's classic Missing Completely at Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) settings, to include multi-mechanism missingness (when different missingness patterns co-exist in the data) and missingness shift (when the missingness mechanism changes between training and test) (ii) we evaluate imputers holistically, based on imputation quality, as well as on the predictive performance, fairness and stability of the models that are trained and tested on the data post-imputation. We use Shades-of-Null to conduct a large-scale empirical study involving 23,940 experimental pipelines, and find that while there is no single best-performing imputation approach for all missingness types, interesting trade-offs arise between predictive performance, fairness and stability, based on the combination of missingness scenario, imputer choice, and the architecture of the predictive model. We make Shades-of-Null publicly available, to enable researchers to rigorously evaluate missing value imputation methods on a wide range of metrics in plausible and socially meaningful scenarios.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

北京阿比特科技有限公司