Learning an effective speaker representation is crucial for achieving reliable performance in speaker verification tasks. Speech signals are high-dimensional, long, and variable-length sequences containing diverse information at each time-frequency (TF) location. The standard convolutional layer that operates on neighboring local regions often fails to capture the complex TF global information. Our motivation is to alleviate these challenges by increasing the modeling capacity, emphasizing significant information, and suppressing possible redundancies. We aim to design a more robust and efficient speaker recognition system by incorporating the benefits of attention mechanisms and Discrete Cosine Transform (DCT) based signal processing techniques, to effectively represent the global information in speech signals. To achieve this, we propose a general global time-frequency context modeling block for speaker modeling. First, an attention-based context model is introduced to capture the long-range and non-local relationship across different time-frequency locations. Second, a 2D-DCT based context model is proposed to improve model efficiency and examine the benefits of signal modeling. A multi-DCT attention mechanism is presented to improve modeling power with alternate DCT base forms. Finally, the global context information is used to recalibrate salient time-frequency locations by computing the similarity between the global context and local features. This effectively improves the speaker verification performance compared to the standard ResNet model and Squeeze & Excitation block by a large margin. Our experimental results show that the proposed global context modeling method can efficiently improve the learned speaker representations by achieving channel-wise and time-frequency feature recalibration.
Object anomaly detection is an important problem in the field of machine vision and has seen remarkable progress recently. However, two significant challenges hinder its research and application. First, existing datasets lack comprehensive visual information from various pose angles. They usually have an unrealistic assumption that the anomaly-free training dataset is pose-aligned, and the testing samples have the same pose as the training data. However, in practice, anomaly may exist in any regions on a object, the training and query samples may have different poses, calling for the study on pose-agnostic anomaly detection. Second, the absence of a consensus on experimental protocols for pose-agnostic anomaly detection leads to unfair comparisons of different methods, hindering the research on pose-agnostic anomaly detection. To address these issues, we develop Multi-pose Anomaly Detection (MAD) dataset and Pose-agnostic Anomaly Detection (PAD) benchmark, which takes the first step to address the pose-agnostic anomaly detection problem. Specifically, we build MAD using 20 complex-shaped LEGO toys including 4K views with various poses, and high-quality and diverse 3D anomalies in both simulated and real environments. Additionally, we propose a novel method OmniposeAD, trained using MAD, specifically designed for pose-agnostic anomaly detection. Through comprehensive evaluations, we demonstrate the relevance of our dataset and method. Furthermore, we provide an open-source benchmark library, including dataset and baseline methods that cover 8 anomaly detection paradigms, to facilitate future research and application in this domain. Code, data, and models are publicly available at //github.com/EricLee0224/PAD.
Large language models, such as OpenAI's ChatGPT, have demonstrated exceptional language understanding capabilities in various NLP tasks. Sparsely activated mixture-of-experts (MoE) has emerged as a promising solution for scaling models while maintaining a constant number of computational operations. Existing MoE model adopts a fixed gating network where each token is computed by the same number of experts. However, this approach contradicts our intuition that the tokens in each sequence vary in terms of their linguistic complexity and, consequently, require different computational costs. Little is discussed in prior research on the trade-off between computation per token and model performance. This paper introduces adaptive gating in MoE, a flexible training strategy that allows tokens to be processed by a variable number of experts based on expert probability distribution. The proposed framework preserves sparsity while improving training efficiency. Additionally, curriculum learning is leveraged to further reduce training time. Extensive experiments on diverse NLP tasks show that adaptive gating reduces at most 22.5% training time while maintaining inference quality. Moreover, we conduct a comprehensive analysis of the routing decisions and present our insights when adaptive gating is used.
Significant advancements have occurred in the application of Large Language Models (LLMs) for various tasks and social simulations. Despite this, their capacities to coordinate within task-oriented social contexts are under-explored. Such capabilities are crucial if LLMs are to effectively mimic human-like social behavior and produce meaningful results. To bridge this gap, we introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities. We situate these agents in a simulated job fair environment as a case study to scrutinize their coordination skills. We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills. Our evaluation demonstrates that these agents show promising performance. However, we also uncover limitations that hinder their effectiveness in more complex coordination tasks. Our work provides valuable insights into the role and evolution of LLMs in task-oriented social simulations.
We propose a neural language modeling system based on low-rank adaptation (LoRA) for speech recognition output rescoring. Although pretrained language models (LMs) like BERT have shown superior performance in second-pass rescoring, the high computational cost of scaling up the pretraining stage and adapting the pretrained models to specific domains limit their practical use in rescoring. Here we present a method based on low-rank decomposition to train a rescoring BERT model and adapt it to new domains using only a fraction (0.08%) of the pretrained parameters. These inserted matrices are optimized through a discriminative training objective along with a correlation-based regularization loss. The proposed low-rank adaptation Rescore-BERT (LoRB) architecture is evaluated on LibriSpeech and internal datasets with decreased training times by factors between 5.4 and 3.6.
SUPERB was proposed to evaluate the generalizability of self-supervised learning (SSL) speech models across various tasks. However, it incurs high computational costs due to the large datasets and diverse tasks. In this paper, we introduce MiniSUPERB, a lightweight benchmark that efficiently evaluates SSL speech models with comparable results to SUPERB but lower computational costs significantly. We carefully select representative tasks, sample datasets, and extract model representations offline. Our approach achieves a Spearman's rank correlation of 0.954 and 0.982 with SUPERB Paper and SUPERB Challenge, respectively. Additionally, we reduce the computational cost by 97% in terms of Multiply-ACcumulate operations (MACs). Furthermore, we evaluate SSL speech models in few-shot scenarios and observe significant variations in their performance. To our knowledge, this is the first study to examine both the computational cost of the model itself and the cost of evaluating it on a benchmark.
The goal of continual learning is to improve the performance of recognition models in learning sequentially arrived data. Although most existing works are established on the premise of learning from scratch, growing efforts have been devoted to incorporating the benefits of pre-training. However, how to adaptively exploit the pre-trained knowledge for each incremental task while maintaining its generalizability remains an open question. In this work, we present an extensive analysis for continual learning on a pre-trained model (CLPM), and attribute the key challenge to a progressive overfitting problem. Observing that selectively reducing the learning rate can almost resolve this issue in the representation layer, we propose a simple but extremely effective approach named Slow Learner with Classifier Alignment (SLCA), which further improves the classification layer by modeling the class-wise distributions and aligning the classification layers in a post-hoc fashion. Across a variety of scenarios, our proposal provides substantial improvements for CLPM (e.g., up to 49.76%, 50.05%, 44.69% and 40.16% on Split CIFAR-100, Split ImageNet-R, Split CUB-200 and Split Cars-196, respectively), and thus outperforms state-of-the-art approaches by a large margin. Based on such a strong baseline, critical factors and promising directions are analyzed in-depth to facilitate subsequent research. Code has been made available at: //github.com/GengDavid/SLCA.
It is widely acknowledged that discriminative representation for speaker verification can be extracted from verbal speech. However, how much speaker information that non-verbal vocalization carries is still a puzzle. This paper explores speaker verification based on the most ubiquitous form of non-verbal voice, laughter. First, we use a semi-automatic pipeline to collect a new Haha-Pod dataset from open-source podcast media. The dataset contains over 240 speakers' laughter clips with corresponding high-quality verbal speech. Second, we propose a Two-Stage Teacher-Student (2S-TS) framework to minimize the within-speaker embedding distance between verbal and non-verbal (laughter) signals. Considering Haha-Pod as a test set, two trials (S2L-Eval) are designed to verify the speaker's identity through laugh sounds. Experimental results demonstrate that our method can significantly improve the performance of the S2L-Eval test set with only a minor degradation on the VoxCeleb1 test set. The resources for the Haha-Pod dataset can be found at //github.com/nevermoreLin/HahaPod.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.