亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventional cameras employed in autonomous vehicle (AV) systems support many perception tasks, but are challenged by low-light or high dynamic range scenes, adverse weather, and fast motion. Novel sensors, such as event and thermal cameras, offer capabilities with the potential to address these scenarios, but they remain to be fully exploited. This paper introduces the Novel Sensors for Autonomous Vehicle Perception (NSAVP) dataset to facilitate future research on this topic. The dataset was captured with a platform including stereo event, thermal, monochrome, and RGB cameras as well as a high precision navigation system providing ground truth poses. The data was collected by repeatedly driving two ~8 km routes and includes varied lighting conditions and opposing viewpoint perspectives. We provide benchmarking experiments on the task of place recognition to demonstrate challenges and opportunities for novel sensors to enhance critical AV perception tasks. To our knowledge, the NSAVP dataset is the first to include stereo thermal cameras together with stereo event and monochrome cameras. The dataset and supporting software suite is available at: //umautobots.github.io/nsavp

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

As technological advancements continue to expand the capabilities of multi unmanned-aerial-vehicle systems (mUAV), human operators face challenges in scalability and efficiency due to the complex cognitive load and operations associated with motion adjustments and team coordination. Such cognitive demands limit the feasible size of mUAV teams and necessitate extensive operator training, impeding broader adoption. This paper developed a Hand Gesture Based Interactive Control (HGIC), a novel interface system that utilize computer vision techniques to intuitively translate hand gestures into modular commands for robot teaming. Through learning control models, these commands enable efficient and scalable mUAV motion control and adjustments. HGIC eliminates the need for specialized hardware and offers two key benefits: 1) Minimal training requirements through natural gestures; and 2) Enhanced scalability and efficiency via adaptable commands. By reducing the cognitive burden on operators, HGIC opens the door for more effective large-scale mUAV applications in complex, dynamic, and uncertain scenarios. HGIC will be open-sourced after the paper being published online for the research community, aiming to drive forward innovations in human-mUAV interactions.

Autonomous mobile robots (AMRs) equipped with high-quality cameras have revolutionized the field of inspections by providing efficient and cost-effective means of conducting surveys. The use of autonomous inspection is becoming more widespread in a variety of contexts, yet it is still challenging to acquire the best inspection information autonomously. In situations where objects may block a robot's view, it is necessary to use reasoning to determine the optimal points for collecting data. Although researchers have explored cloud-based applications to store inspection data, these applications may not operate optimally under network constraints, and parsing these datasets can be manually intensive. Instead, there is an emerging requirement for AMRs to autonomously capture the most informative views efficiently. To address this challenge, we present an autonomous Next-Best-View (NBV) framework that maximizes the inspection information while reducing the number of pictures needed during operations. The framework consists of a formalized evaluation metric using ray-tracing and Gaussian process interpolation to estimate information reward based on the current understanding of the partially-known environment. A derivative-free optimization (DFO) method is used to sample candidate views in the environment and identify the NBV point. The proposed approach's effectiveness is shown by comparing it with existing methods and further validated through simulations and experiments with various vehicles.

3D occupancy prediction based on multi-sensor fusion, crucial for a reliable autonomous driving system, enables fine-grained understanding of 3D scenes. Previous fusion-based 3D occupancy predictions relied on depth estimation for processing 2D image features. However, depth estimation is an ill-posed problem, hindering the accuracy and robustness of these methods. Furthermore, fine-grained occupancy prediction demands extensive computational resources. We introduce OccFusion, a multi-modal fusion method free from depth estimation, and a corresponding point cloud sampling algorithm for dense integration of image features. Building on this, we propose an active training method and an active coarse to fine pipeline, enabling the model to adaptively learn more from complex samples and optimize predictions specifically for challenging areas such as small or overlapping objects. The active methods we propose can be naturally extended to any occupancy prediction model. Experiments on the OpenOccupancy benchmark show our method surpasses existing state-of-the-art (SOTA) multi-modal methods in IoU across all categories. Additionally, our model is more efficient during both the training and inference phases, requiring far fewer computational resources. Comprehensive ablation studies demonstrate the effectiveness of our proposed techniques.

Optimal decision-making presents a significant challenge for autonomous systems operating in uncertain, stochastic and time-varying environments. Environmental variability over time can significantly impact the system's optimal decision making strategy for mission completion. To model such environments, our work combines the previous notion of Time-Varying Markov Decision Processes (TVMDP) with partial observability and introduces Time-Varying Partially Observable Markov Decision Processes (TV-POMDP). We propose a two-pronged approach to accurately estimate and plan within the TV-POMDP: 1) Memory Prioritized State Estimation (MPSE), which leverages weighted memory to provide more accurate time-varying transition estimates; and 2) an MPSE-integrated planning strategy that optimizes long-term rewards while accounting for temporal constraint. We validate the proposed framework and algorithms using simulations and hardware, with robots exploring a partially observable, time-varying environments. Our results demonstrate superior performance over standard methods, highlighting the framework's effectiveness in stochastic, uncertain, time-varying domains.

The rise of generative models has driven significant advancements in recommender systems, leaving unique opportunities for enhancing users' personalized recommendations. This workshop serves as a platform for researchers to explore and exchange innovative concepts related to the integration of generative models into recommender systems. It primarily focuses on five key perspectives: (i) improving recommender algorithms, (ii) generating personalized content, (iii) evolving the user-system interaction paradigm, (iv) enhancing trustworthiness checks, and (v) refining evaluation methodologies for generative recommendations. With generative models advancing rapidly, an increasing body of research is emerging in these domains, underscoring the timeliness and critical importance of this workshop. The related research will introduce innovative technologies to recommender systems and contribute to fresh challenges in both academia and industry. In the long term, this research direction has the potential to revolutionize the traditional recommender paradigms and foster the development of next-generation recommender systems.

Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids intricate program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at //github.com/gonglinyuan/ast_t5.

Amidst task-specific learning-based control synthesis frameworks that achieve impressive empirical results, a unified framework that systematically constructs an optimal policy for sufficiently solving a general notion of a task is absent. Hence, we propose a theoretical framework for a task-centered control synthesis leveraging two critical ideas: 1) oracle-guided policy optimization for the non-limiting integration of sub-optimal task-based priors to guide the policy optimization and 2) task-vital multimodality to break down solving a task into executing a sequence of behavioral modes. The proposed approach results in highly agile parkour and diving on a 16-DoF dynamic bipedal robot. The obtained policy advances indefinitely on a track, performing leaps and jumps of varying lengths and heights for the parkour task. Corresponding to the dive task, the policy demonstrates front, back, and side flips from various initial heights. Finally, we introduce a novel latent mode space reachability analysis to study our policies' versatility and generalization by computing a feasible mode set function through which we certify a set of failure-free modes for our policy to perform at any given state.

Indoor autonomous driving testbeds have emerged to complement expensive outdoor testbeds and virtual simulations, offering scalable and cost-effective solutions for research in navigation, traffic optimization, and swarm intelligence. However, they often lack the robust sensing and computing infrastructure for advanced research. Addressing these limitations, we introduce the Indoor Connected Autonomous Testbed (ICAT), a platform that not only tackles the unique challenges of indoor autonomous driving but also innovates vehicle computing and V2X communication. Moreover, ICAT leverages digital twins through CARLA and SUMO simulations, facilitating both centralized and decentralized autonomy deployments.

Autonomous parallel-style on-ramp merging in human controlled traffic continues to be an existing issue for autonomous vehicle control. Existing non-learning based solutions for vehicle control rely on rules and optimization primarily. These methods have been seen to present significant challenges. Recent advancements in Deep Reinforcement Learning have shown promise and have received significant academic interest however the available learning based approaches show inadequate attention to other highway vehicles and often rely on inaccurate road traffic assumptions. In addition, the parallel-style case is rarely considered. A novel learning based model for acceleration and lane change decision making that explicitly considers the utility to both the ego vehicle and its surrounding vehicles which may be cooperative or uncooperative to produce behaviour that is socially acceptable is proposed. The novel reward function makes use of Social Value Orientation to weight the vehicle's level of social cooperation and is divided into ego vehicle and surrounding vehicle utility which are weighted according to the model's designated Social Value Orientation. A two-lane highway with an on-ramp divided into a taper-style and parallel-style section is considered. Simulation results indicated the importance of considering surrounding vehicles in reward function design and show that the proposed model matches or surpasses those in literature in terms of collisions while also introducing socially courteous behaviour avoiding near misses and anti-social behaviour through direct consideration of the effect of merging on surrounding vehicles.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司