Hidden Markov models (HMMs) are probabilistic methods in which observations are seen as realizations of a latent Markov process with discrete states that switch over time. Moving beyond standard statistical tests, HMMs offer a statistical environment to optimally exploit the information present in multivariate time series, uncovering the latent dynamics that rule them. Here, we extend the Poisson HMM to the multilevel framework, accommodating variability between individuals with continuously distributed individual random effects following a lognormal distribution, and describe how to estimate the model in a fully parametric Bayesian framework. The proposed multilevel HMM enables probabilistic decoding of hidden state sequences from multivariate count time-series based on individual-specific parameters, and offers a framework to quantificate between-individual variability formally. Through a Monte Carlo study we show that the multilevel HMM outperforms the HMM for scenarios involving heterogeneity between individuals, demonstrating improved decoding accuracy and estimation performance of parameters of the emission distribution, and performs equally well when not between heterogeneity is present. Finally, we illustrate how to use our model to explore the latent dynamics governing complex multivariate count data in an empirical application concerning pilot whale diving behaviour in the wild, and how to identify neural states from multi-electrode recordings of motor neural cortex activity in a macaque monkey in an experimental set up. We make the multilevel HMM introduced in this study publicly available in the R-package mHMMbayes in CRAN.
We consider the problem of linearly ordered (LO) coloring of hypergraphs. A hypergraph has an LO coloring if there is a vertex coloring, using a set of ordered colors, so that (i) no edge is monochromatic, and (ii) each edge has a unique maximum color. It is an open question as to whether or not a 2-LO colorable 3-uniform hypergraph can be LO colored with 3 colors in polynomial time. Nakajima and Zivn\'{y} recently gave a polynomial-time algorithm to color such hypergraphs with $\widetilde{O}(n^{1/3})$ colors and asked if SDP methods can be used directly to obtain improved bounds. Our main result is to show how to use SDP-based rounding methods to produce an LO coloring with $\widetilde{O}(n^{1/5})$ colors for such hypergraphs. We first show that we can reduce the problem to cases with highly structured SDP solutions, which we call balanced hypergraphs. Then we show how to apply classic SDP-rounding tools in this case. We believe that the reduction to balanced hypergraphs is novel and could be of independent interest.
Capturing the extremal behaviour of data often requires bespoke marginal and dependence models which are grounded in rigorous asymptotic theory, and hence provide reliable extrapolation into the upper tails of the data-generating distribution. We present a toolbox of four methodological frameworks, motivated by modern extreme value theory, that can be used to accurately estimate extreme exceedance probabilities or the corresponding level in either a univariate or multivariate setting. Our frameworks were used to facilitate the winning contribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised for the 13$^\text{th}$ International Conference on Extreme Value Analysis. This competition comprised seven teams competing across four separate sub-challenges, with each requiring the modelling of data simulated from known, yet highly complex, statistical distributions, and extrapolation far beyond the range of the available samples in order to predict probabilities of extreme events. Data were constructed to be representative of real environmental data, sampled from the fantasy country of "Utopia"
State transition algorithm (STA) is a metaheuristic method for global optimization. Recently, a modified STA named parameter optimal state transition algorithm (POSTA) is proposed. In POSTA, the performance of expansion operator, rotation operator and axesion operator is optimized through a parameter selection mechanism. But due to the insufficient utilization of historical information, POSTA still suffers from slow convergence speed and low solution accuracy on specific problems. To make better use of the historical information, Nelder-Mead (NM) simplex search and quadratic interpolation (QI) are integrated into POSTA. The enhanced POSTA is tested against 14 benchmark functions with 20-D, 30-D and 50-D space. An experimental comparison with several competitive metaheuristic methods demonstrates the effectiveness of the proposed method.
Linear structural vector autoregressive models can be identified statistically without imposing restrictions on the model if the shocks are mutually independent and at most one of them is Gaussian. We show that this result extends to structural threshold and smooth transition vector autoregressive models incorporating a time-varying impact matrix defined as a weighted sum of the impact matrices of the regimes. Our empirical application studies the effects of the climate policy uncertainty shock on the U.S. macroeconomy. In a structural logistic smooth transition vector autoregressive model consisting of two regimes, we find that a positive climate policy uncertainty shock decreases production in times of low economic policy uncertainty but slightly increases it in times of high economic policy uncertainty. The introduced methods are implemented to the accompanying R package sstvars.
This article presents a new polynomial parameterized sigmoid called SIGTRON, which is an extended asymmetric sigmoid with Perceptron, and its companion convex model called SIGTRON-imbalanced classification (SIC) model that employs a virtual SIGTRON-induced convex loss function. In contrast to the conventional $\pi$-weighted cost-sensitive learning model, the SIC model does not have an external $\pi$-weight on the loss function but has internal parameters in the virtual SIGTRON-induced loss function. As a consequence, when the given training dataset is close to the well-balanced condition considering the (scale-)class-imbalance ratio, we show that the proposed SIC model is more adaptive to variations of the dataset, such as the inconsistency of the (scale-)class-imbalance ratio between the training and test datasets. This adaptation is justified by a skewed hyperplane equation, created via linearization of the gradient satisfying $\epsilon$-optimal condition. Additionally, we present a quasi-Newton optimization(L-BFGS) framework for the virtual convex loss by developing an interval-based bisection line search. Empirically, we have observed that the proposed approach outperforms (or is comparable to) $\pi$-weighted convex focal loss and balanced classifier LIBLINEAR(logistic regression, SVM, and L2SVM) in terms of test classification accuracy with $51$ two-class and $67$ multi-class datasets. In binary classification problems, where the scale-class-imbalance ratio of the training dataset is not significant but the inconsistency exists, a group of SIC models with the best test accuracy for each dataset (TOP$1$) outperforms LIBSVM(C-SVC with RBF kernel), a well-known kernel-based classifier.
Realizing computationally complex quantum circuits in the presence of noise and imperfections is a challenging task. While fault-tolerant quantum computing provides a route to reducing noise, it requires a large overhead for generic algorithms. Here, we develop and analyze a hardware-efficient, fault-tolerant approach to realizing complex sampling circuits. We co-design the circuits with the appropriate quantum error correcting codes for efficient implementation in a reconfigurable neutral atom array architecture, constituting what we call a fault-tolerant compilation of the sampling algorithm. Specifically, we consider a family of $[[2^D , D, 2]]$ quantum error detecting codes whose transversal and permutation gate set can realize arbitrary degree-$D$ instantaneous quantum polynomial (IQP) circuits. Using native operations of the code and the atom array hardware, we compile a fault-tolerant and fast-scrambling family of such IQP circuits in a hypercube geometry, realized recently in the experiments by Bluvstein et al. [Nature 626, 7997 (2024)]. We develop a theory of second-moment properties of degree-$D$ IQP circuits for analyzing hardness and verification of random sampling by mapping to a statistical mechanics model. We provide evidence that sampling from hypercube IQP circuits is classically hard to simulate and analyze the linear cross-entropy benchmark (XEB) in comparison to the average fidelity. To realize a fully scalable approach, we first show that Bell sampling from degree-$4$ IQP circuits is classically intractable and can be efficiently validated. We further devise new families of $[[O(d^D),D,d]]$ color codes of increasing distance $d$, permitting exponential error suppression for transversal IQP sampling. Our results highlight fault-tolerant compiling as a powerful tool in co-designing algorithms with specific error-correcting codes and realistic hardware.
Modern regression applications can involve hundreds or thousands of variables which motivates the use of variable selection methods. Bayesian variable selection defines a posterior distribution on the possible subsets of the variables (which are usually termed models) to express uncertainty about which variables are strongly linked to the response. This can be used to provide Bayesian model averaged predictions or inference, and to understand the relative importance of different variables. However, there has been little work on meaningful representations of this uncertainty beyond first order summaries. We introduce Cartesian credible sets to address this gap. The elements of these sets are formed by concatenating sub-models defined on each block of a partition of the variables. Investigating these sub-models allow us to understand whether the models in the Cartesian credible set always/never/sometimes include a particular variable or group of variables and provide a useful summary of model uncertainty. We introduce methods to find these sets that emphasize ease of understanding. The potential of the method is illustrated on regression problems with both small and large numbers of variables.
Combined experiments and computational modelling are used to increase understanding of the suitability of the Single-Edge Notch Tension (SENT) test for assessing hydrogen embrittlement susceptibility. The SENT tests were designed to provide the mode I threshold stress intensity factor ($K_{\text{th}}$) for hydrogen-assisted cracking of a C110 steel in two corrosive environments. These were accompanied by hydrogen permeation experiments to relate the environments to the absorbed hydrogen concentrations. A coupled phase-field-based deformation-diffusion-fracture model is then employed to simulate the SENT tests, predicting $K_{\text{th}}$ in good agreement with the experimental results and providing insights into the hydrogen absorption-diffusion-cracking interactions. The suitability of SENT testing and its optimal characteristics (e.g., test duration) are discussed in terms of the various simultaneous active time-dependent phenomena, triaxiality dependencies, and regimes of hydrogen embrittlement susceptibility.
Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.
In this work, a family of symmetric interpolation points are generated on the four-dimensional simplex (i.e. the pentatope). These points are optimized in order to minimize the Lebesgue constant. The process of generating these points closely follows that outlined by Warburton in "An explicit construction of interpolation nodes on the simplex," Journal of Engineering Mathematics, 2006. Here, Warburton generated optimal interpolation points on the triangle and tetrahedron by formulating explicit geometric warping and blending functions, and applying these functions to equidistant nodal distributions. The locations of the resulting points were Lebesgue-optimized. In our work, we extend this procedure to four dimensions, and construct interpolation points on the pentatope up to order ten. The Lebesgue constants of our nodal sets are calculated, and are shown to outperform those of equidistant nodal distributions.