亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning techniques are steadily becoming more important in modern biology, and are used to build predictive models, discover patterns, and investigate biological problems. However, models trained on one dataset are often not generalizable to other datasets from different cohorts or laboratories, due to differences in the statistical properties of these datasets. These could stem from technical differences, such as the measurement technique used, or from relevant biological differences between the populations studied. Domain adaptation, a type of transfer learning, can alleviate this problem by aligning the statistical distributions of features and samples among different datasets so that similar models can be applied across them. However, a majority of state-of-the-art domain adaptation methods are designed to work with large-scale data, mostly text and images, while biological datasets often suffer from small sample sizes, and possess complexities such as heterogeneity of the feature space. This Review aims to synthetically discuss domain adaptation methods in the context of small-scale and highly heterogeneous biological data. We describe the benefits and challenges of domain adaptation in biological research and critically discuss some of its objectives, strengths, and weaknesses through key representative methodologies. We argue for the incorporation of domain adaptation techniques to the computational biologist's toolkit, with further development of customized approaches.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Mediation analyses allow researchers to quantify the effect of an exposure variable on an outcome variable through a mediator variable. If a binary mediator variable is misclassified, the resulting analysis can be severely biased. Misclassification is especially difficult to deal with when it is differential and when there are no gold standard labels available. Previous work has addressed this problem using a sensitivity analysis framework or by assuming that misclassification rates are known. We leverage a variable related to the misclassification mechanism to recover unbiased parameter estimates without using gold standard labels. The proposed methods require the reasonable assumption that the sum of the sensitivity and specificity is greater than 1. Three correction methods are presented: (1) an ordinary least squares correction for Normal outcome models, (2) a multi-step predictive value weighting method, and (3) a seamless expectation-maximization algorithm. We apply our misclassification correction strategies to investigate the mediating role of gestational hypertension on the association between maternal age and pre-term birth.

Statistical learning under distribution shift is challenging when neither prior knowledge nor fully accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to control the worst-case statistical performance within an uncertainty set of candidate distributions, but how to properly specify the set remains challenging. To enable distributional robustness without being overly conservative, in this paper, we propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate. More specifically, we assume the unknown density ratio between the target distribution and its estimate is isotonic with respect to some partial order. At the population level, we provide a solution to the shape-constrained optimization problem that does not involve the isotonic constraint. At the sample level, we provide consistency results for an empirical estimator of the target in a range of different settings. Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.

Stability is a basic requirement when studying the behavior of dynamical systems. However, stabilizing dynamical systems via reinforcement learning is challenging because only little data can be collected over short time horizons before instabilities are triggered and data become meaningless. This work introduces a reinforcement learning approach that is formulated over latent manifolds of unstable dynamics so that stabilizing policies can be trained from few data samples. The unstable manifolds are minimal in the sense that they contain the lowest dimensional dynamics that are necessary for learning policies that guarantee stabilization. This is in stark contrast to generic latent manifolds that aim to approximate all -- stable and unstable -- system dynamics and thus are higher dimensional and often require higher amounts of data. Experiments demonstrate that the proposed approach stabilizes even complex physical systems from few data samples for which other methods that operate either directly in the system state space or on generic latent manifolds fail.

Discrete choice models with non-monotonic response functions are important in many areas of application, especially political sciences and marketing. This paper describes a novel unfolding model for binary data that allows for heavy-tailed shocks to the underlying utilities. One of our key contributions is a Markov chain Monte Carlo algorithm that requires little or no parameter tuning, fully explores the support of the posterior distribution, and can be used to fit various extensions of our core model that involve (Bayesian) hypothesis testing on the latent construct. Our empirical evaluations of the model and the associated algorithm suggest that they provide better complexity-adjusted fit to voting data from the United States House of Representatives.

In the era of big data, an ever-growing volume of information is recorded, either continuously over time or sporadically, at distinct time intervals. Functional Data Analysis (FDA) stands at the cutting edge of this data revolution, offering a powerful framework for handling and extracting meaningful insights from such complex datasets. The currently proposed FDA me\-thods can often encounter challenges, especially when dealing with curves of varying shapes. This can largely be attributed to the method's strong dependence on data approximation as a key aspect of the analysis process. In this work, we propose a free knots spline estimation method for functional data with two penalty terms and demonstrate its performance by comparing the results of several clustering methods on simulated and real data.

Logical modeling is a powerful tool in biology, offering a system-level understanding of the complex interactions that govern biological processes. A gap that hinders the scalability of logical models is the need to specify the update function of every vertex in the network depending on the status of its predecessors. To address this, we introduce in this paper the concept of strong regulation, where a vertex is only updated to active/inactive if all its predecessors agree in their influences; otherwise, it is set to ambiguous. We explore the interplay between active, inactive, and ambiguous influences in a network. We discuss the existence of phenotype attractors in such networks, where the status of some of the variables is fixed to active/inactive, while the others can have an arbitrary status, including ambiguous.

Quantum machine learning models based on parametrized quantum circuits, also called quantum neural networks (QNNs), are considered to be among the most promising candidates for applications on near-term quantum devices. Here we explore the expressivity and inductive bias of QNNs by exploiting an exact mapping from QNNs with inputs $x$ to classical perceptrons acting on $x \otimes x$ (generalised to complex inputs). The simplicity of the perceptron architecture allows us to provide clear examples of the shortcomings of current QNN models, and the many barriers they face to becoming useful general-purpose learning algorithms. For example, a QNN with amplitude encoding cannot express the Boolean parity function for $n\geq 3$, which is but one of an exponential number of data structures that such a QNN is unable to express. Mapping a QNN to a classical perceptron simplifies training, allowing us to systematically study the inductive biases of other, more expressive embeddings on Boolean data. Several popular embeddings primarily produce an inductive bias towards functions with low class balance, reducing their generalisation performance compared to deep neural network architectures which exhibit much richer inductive biases. We explore two alternate strategies that move beyond standard QNNs. In the first, we use a QNN to help generate a classical DNN-inspired kernel. In the second we draw an analogy to the hierarchical structure of deep neural networks and construct a layered non-linear QNN that is provably fully expressive on Boolean data, while also exhibiting a richer inductive bias than simple QNNs. Finally, we discuss characteristics of the QNN literature that may obscure how hard it is to achieve quantum advantage over deep learning algorithms on classical data.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司