The recent advancement of Deep Reinforcement Learning (DRL) contributed to robotics by allowing automatic controller design. The automatic controller design is a crucial approach for designing swarm robotic systems, which require more complex controllers than a single robot system to lead a desired collective behaviour. Although the DRL-based controller design method showed its effectiveness, the reliance on the central training server is a critical problem in real-world environments where robot-server communication is unstable or limited. We propose a novel Federated Learning (FL) based DRL training strategy (FLDDPG) for use in swarm robotic applications. Through the comparison with baseline strategies under a limited communication bandwidth scenario, it is shown that the FLDDPG method resulted in higher robustness and generalisation ability into a different environment and real robots, while the baseline strategies suffer from the limitation of communication bandwidth. This result suggests that the proposed method can benefit swarm robotic systems operating in environments with limited communication bandwidth, e.g., in high-radiation, underwater, or subterranean environments.
Accurate value estimates are important for off-policy reinforcement learning. Algorithms based on temporal difference learning typically are prone to an over- or underestimation bias building up over time. In this paper, we propose a general method called Adaptively Calibrated Critics (ACC) that uses the most recent high variance but unbiased on-policy rollouts to alleviate the bias of the low variance temporal difference targets. We apply ACC to Truncated Quantile Critics, which is an algorithm for continuous control that allows regulation of the bias with a hyperparameter tuned per environment. The resulting algorithm adaptively adjusts the parameter during training rendering hyperparameter search unnecessary and sets a new state of the art on the OpenAI gym continuous control benchmark among all algorithms that do not tune hyperparameters for each environment. ACC further achieves improved results on different tasks from the Meta-World robot benchmark. Additionally, we demonstrate the generality of ACC by applying it to TD3 and showing an improved performance also in this setting.
To execute collaborative tasks in unknown environments, a robotic swarm needs to establish a global reference frame and locate itself in a shared understanding of the environment. However, it faces many challenges in real-world scenarios, such as the prior information about the environment being absent and poor communication among the team members. This work presents DCL-SLAM, a fully distributed collaborative LiDAR SLAM framework intended for the robotic swarm to simultaneously co-localize in an unknown environment with minimal information exchange. Based on ad-hoc wireless peer-to-peer communication (limited bandwidth and communication range), DCL-SLAM adopts the lightweight LiDAR-Iris descriptor for place recognition and does not require full connectivity among teams. DCL-SLAM includes three main parts: a replaceable single-robot front-end that produces LiDAR odometry results; a distributed loop closure module that detects inter-robot loop closures with keyframes; and a distributed back-end module that adapts distributed pose graph optimizer combined with a pairwise consistent measurement set maximization algorithm to reject spurious inter-robot loop closures. We integrate our proposed framework with diverse open-source LiDAR odometry methods to show its versatility. The proposed system is extensively evaluated on benchmarking datasets and field experiments over various scales and environments. Experimental result shows that DCL-SLAM achieves higher accuracy and lower communication bandwidth than other state-of-art multi-robot SLAM systems. The full source code is available at //github.com/zhongshp/DCL-SLAM.git.
When robots enter everyday human environments, they need to understand their tasks and how they should perform those tasks. To encode these, reward functions, which specify the objective of a robot, are employed. However, designing reward functions can be extremely challenging for complex tasks and environments. A promising approach is to learn reward functions from humans. Recently, several robot learning works embrace this approach and leverage human demonstrations to learn the reward functions. Known as inverse reinforcement learning, this approach relies on a fundamental assumption: humans can provide near-optimal demonstrations to the robot. Unfortunately, this is rarely the case: human demonstrations to the robot are often suboptimal due to various reasons, e.g., difficulty of teleoperation, robot having high degrees of freedom, or humans' cognitive limitations. This thesis is an attempt towards learning reward functions from human users by using other, more reliable data modalities. Specifically, we study how reward functions can be learned using comparative feedback, in which the human user compares multiple robot trajectories instead of (or in addition to) providing demonstrations. To this end, we first propose various forms of comparative feedback, e.g., pairwise comparisons, best-of-many choices, rankings, scaled comparisons; and describe how a robot can use these various forms of human feedback to infer a reward function, which may be parametric or non-parametric. Next, we propose active learning techniques to enable the robot to ask for comparison feedback that optimizes for the expected information that will be gained from that user feedback. Finally, we demonstrate the applicability of our methods in a wide variety of domains, ranging from autonomous driving simulations to home robotics, from standard reinforcement learning benchmarks to lower-body exoskeletons.
In this paper, we propose a novel reinforcement learning (RL) based path generation (RL-PG) approach for mobile robot navigation without a prior exploration of an unknown environment. Multiple predictive path points are dynamically generated by a deep Markov model optimized using RL approach for robot to track. To ensure the safety when tracking the predictive points, the robot's motion is fine-tuned by a motion fine-tuning module. Such an approach, using the deep Markov model with RL algorithm for planning, focuses on the relationship between adjacent path points. We analyze the benefits that our proposed approach are more effective and are with higher success rate than RL-Based approach DWA-RL and a traditional navigation approach APF. We deploy our model on both simulation and physical platforms and demonstrate our model performs robot navigation effectively and safely.
In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.