亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Synthetic data has been hailed as the silver bullet for privacy preserving data analysis. If a record is not real, then how could it violate a person's privacy? In addition, deep-learning based generative models are employed successfully to approximate complex high-dimensional distributions from data and draw realistic samples from this learned distribution. It is often overlooked though that generative models are prone to memorising many details of individual training records and often generate synthetic data that too closely resembles the underlying sensitive training data, hence violating strong privacy regulations as, e.g., encountered in health care. Differential privacy is the well-known state-of-the-art framework for guaranteeing protection of sensitive individuals' data, allowing aggregate statistics and even machine learning models to be released publicly without compromising privacy. The training mechanisms however often add too much noise during the training process, and thus severely compromise the utility of these private models. Even worse, the tight privacy budgets do not allow for many training epochs so that model quality cannot be properly controlled in practice. In this paper we explore an alternative approach for privately generating data that makes direct use of the inherent stochasticity in generative models, e.g., variational autoencoders. The main idea is to appropriately constrain the continuity modulus of the deep models instead of adding another noise mechanism on top. For this approach, we derive mathematically rigorous privacy guarantees and illustrate its effectiveness with practical experiments.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 優化器 · INTERACT · Performer ·
2023 年 9 月 4 日

Robots must make and break contact to interact with the world and perform useful tasks. However, planning and control through contact remains a formidable challenge. In this work, we achieve real-time contact-implicit model predictive control with a surprisingly simple method: inverse dynamics trajectory optimization. While trajectory optimization with inverse dynamics is not new, we introduce a series of incremental innovations that collectively enable fast model predictive control on a variety of challenging manipulation and locomotion tasks. We implement these innovations in an open-source solver, and present a variety of simulation examples to support the effectiveness of the proposed approach. Additionally, we demonstrate contact-implicit model predictive control on hardware at over 100 Hz for a 20 degree-of-freedom bi-manual manipulation task.

Business processes may face a variety of problems due to the number of tasks that need to be handled within short time periods, resources' workload and working patterns, as well as bottlenecks. These problems may arise locally and be short-lived, but as the process is forced to operate outside its standard capacity, the effect on the underlying process instances can be costly. We use the term high-level behavior to cover all process behavior which can not be captured in terms of the individual process instances. %Whenever such behavior emerges, we call the cases which are involved in it participating cases. The natural question arises as to how the characteristics of cases relate to the high-level behavior they give rise to. In this work, we first show how to detect and correlate observations of high-level problems, as well as determine the corresponding (non-)participating cases. Then we show how to assess the connection between any case-level characteristic and any given detected sequence of high-level problems. Applying our method on the event data of a real loan application process revealed which specific combinations of delays, batching and busy resources at which particular parts of the process correlate with an application's duration and chance of a positive outcome.

We describe a generic JSON based file format which is suitable for computations in computer algebra. This is implemented in the computer algebra system OSCAR, but we also indicate how it can be used in a different context.

It is a highly desirable property for deep networks to be robust against small input changes. One popular way to achieve this property is by designing networks with a small Lipschitz constant. In this work, we propose a new technique for constructing such Lipschitz networks that has a number of desirable properties: it can be applied to any linear network layer (fully-connected or convolutional), it provides formal guarantees on the Lipschitz constant, it is easy to implement and efficient to run, and it can be combined with any training objective and optimization method. In fact, our technique is the first one in the literature that achieves all of these properties simultaneously. Our main contribution is a rescaling-based weight matrix parametrization that guarantees each network layer to have a Lipschitz constant of at most 1 and results in the learned weight matrices to be close to orthogonal. Hence we call such layers almost-orthogonal Lipschitz (AOL). Experiments and ablation studies in the context of image classification with certified robust accuracy confirm that AOL layers achieve results that are on par with most existing methods. Yet, they are simpler to implement and more broadly applicable, because they do not require computationally expensive matrix orthogonalization or inversion steps as part of the network architecture. We provide code at //github.com/berndprach/AOL.

Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction, i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: //github.com/Guanys-dar/MGDN.

Advanced persistent threat (APT) is a kind of stealthy, sophisticated, and long-term cyberattack that has brought severe financial losses and critical infrastructure damages. Existing works mainly focus on APT defense under stable network topologies, while the problem under time-varying dynamic networks (e.g., vehicular networks) remains unexplored, which motivates our work. Besides, the spatiotemporal dynamics in defense resources, complex attackers' lateral movement behaviors, and lack of timely defense make APT defense a challenging issue under time-varying networks. In this paper, we propose a novel game-theoretical APT defense approach to promote real-time and optimal defense strategy-making under both periodic time-varying and general time-varying environments. Specifically, we first model the interactions between attackers and defenders in an APT process as a dynamic APT repair game, and then formulate the APT damage minimization problem as the precise prevention and control (PPAC) problem. To derive the optimal defense strategy under both latency and defense resource constraints, we further devise an online optimal control-based mechanism integrated with two backtracking-forward algorithms to fastly derive the near-optimal solution of the PPAC problem in real time. Extensive experiments are carried out, and the results demonstrate that our proposed scheme can efficiently obtain optimal defense strategy in 54481 ms under seven attack-defense interactions with 9.64$\%$ resource occupancy in stimulated periodic time-varying and general time-varying networks. Besides, even under static networks, our proposed scheme still outperforms existing representative APT defense approaches in terms of service stability and defense resource utilization.

Bayes estimators are well known to provide a means to incorporate prior knowledge that can be expressed in terms of a single prior distribution. However, when this knowledge is too vague to express with a single prior, an alternative approach is needed. Gamma-minimax estimators provide such an approach. These estimators minimize the worst-case Bayes risk over a set $\Gamma$ of prior distributions that are compatible with the available knowledge. Traditionally, Gamma-minimaxity is defined for parametric models. In this work, we define Gamma-minimax estimators for general models and propose adversarial meta-learning algorithms to compute them when the set of prior distributions is constrained by generalized moments. Accompanying convergence guarantees are also provided. We also introduce a neural network class that provides a rich, but finite-dimensional, class of estimators from which a Gamma-minimax estimator can be selected. We illustrate our method in two settings, namely entropy estimation and a prediction problem that arises in biodiversity studies.

This paper presents a taxonomy for analytical spreadsheet models. It considers both the use case that a spreadsheet is meant to serve, and the engineering resources devoted to its development. We extend a previous three-type taxonomy, to identify nine types of spreadsheet models, that encompass the many analytical spreadsheet models seen in the literature. We connect disparate research literature to distinguish between an "analytical solution" and an "industrial-quality analytical spreadsheet model". We explore the nature of each of the nine types, propose definitions for some, relate them to the literature, and hypothesize on how they might arise. The taxonomy aids in identifying where various spreadsheet development guidelines are most useful, provides a lens for viewing spreadsheet errors and risk, and offers a structure for understanding how spreadsheets change over time. This taxonomy opens the door to many interesting research questions, including refinements to itself.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司