亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper shows the initial stages of development, from first principles, of a formal logic to characterise and then explore issues in a broadly defined idea of Veracity, which includes properties of demonstrability, truth, trust and authenticity.

相關內容

We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance. To this end, we propose a notion of "tree averaging," based on which we further propose a novel ensemble method for unsupervised parsing. To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods. Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions.

This paper introduces a uniform substitution calculus for differential refinement logic dRL. The logic dRL extends the differential dynamic logic dL such that one can simultaneously reason about properties of and relations between hybrid systems. Refinements is useful e.g. for simplifying proofs by relating a concrete hybrid system to an abstract one from which the property can be proved more easily. Uniform substitution is the key to parsimonious prover microkernels. It enables the verbatim use of single axiom formulas instead of axiom schemata with soundness-critical side conditions scattered across the proof calculus. The uniform substitution rule can then be used to instantiate all axioms soundly. Access to differential variables in dRL enables more control over the notion of refinement, which is shown to be decidable on a fragment of hybrid programs.

Graph coloring problems are among the most fundamental problems in parallel and distributed computing, and have been studied extensively in both settings. In this context, designing efficient deterministic algorithms for these problems has been found particularly challenging. In this work we consider this challenge, and design a novel framework for derandomizing algorithms for coloring-type problems in the Massively Parallel Computation (MPC) model with sublinear space. We give an application of this framework by showing that a recent $(degree+1)$-list coloring algorithm by Halldorsson et al. (STOC'22) in the LOCAL model of distributed computation can be translated to the MPC model and efficiently derandomized. Our algorithm runs in $O(\log \log \log n)$ rounds, which matches the complexity of the state of the art algorithm for the $(\Delta + 1)$-coloring problem.

We provide in this work an algorithm for approximating a very broad class of symmetric Toeplitz matrices to machine precision in $\mathcal{O}(n \log n)$ time. In particular, for a Toeplitz matrix $\mathbf{\Sigma}$ with values $\mathbf{\Sigma}_{j,k} = h_{|j-k|} = \int_{-1/2}^{1/2} e^{2 \pi i |j-k| \omega} S(\omega) \mathrm{d} \omega$ where $S(\omega)$ is piecewise smooth, we give an approximation $\mathbf{\mathcal{F}} \mathbf{\Sigma} \mathbf{\mathcal{F}}^H \approx \mathbf{D} + \mathbf{U} \mathbf{V}^H$, where $\mathbf{\mathcal{F}}$ is the DFT matrix, $\mathbf{D}$ is diagonal, and the matrices $\mathbf{U}$ and $\mathbf{V}$ are in $\mathbb{C}^{n \times r}$ with $r \ll n$. Studying these matrices in the context of time series, we offer a theoretical explanation of this structure and connect it to existing spectral-domain approximation frameworks. We then give a complete discussion of the numerical method for assembling the approximation and demonstrate its efficiency for improving Whittle-type likelihood approximations, including dramatic examples where a correction of rank $r = 2$ to the standard Whittle approximation increases the accuracy from $3$ to $14$ digits for a matrix $\mathbf{\Sigma} \in \mathbb{R}^{10^5 \times 10^5}$. The method and analysis of this work applies well beyond time series analysis, providing an algorithm for extremely accurate direct solves with a wide variety of symmetric Toeplitz matrices. The analysis employed here largely depends on asymptotic expansions of oscillatory integrals, and also provides a new perspective on when existing spectral-domain approximation methods for Gaussian log-likelihoods can be particularly problematic.

Neural reflectance models are capable of reproducing the spatially-varying appearance of many real-world materials at different scales. Unfortunately, existing techniques such as NeuMIP have difficulties handling materials with strong shadowing effects or detailed specular highlights. In this paper, we introduce a neural appearance model that offers a new level of accuracy. Central to our model is an inception-based core network structure that captures material appearances at multiple scales using parallel-operating kernels and ensures multi-stage features through specialized convolution layers. Furthermore, we encode the inputs into frequency space, introduce a gradient-based loss, and employ it adaptive to the progress of the learning phase. We demonstrate the effectiveness of our method using a variety of synthetic and real examples.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司