Trustworthy language models should abstain from answering questions when they do not know the answer. However, the answer to a question can be unknown for a variety of reasons. Prior research has focused on the case in which the question is clear and the answer is unambiguous but possibly unknown, but the answer to a question can also be unclear due to uncertainty of the questioner's intent or context. We investigate question answering from this perspective, focusing on answering a subset of questions with a high degree of accuracy, from a set of questions in which many are inherently ambiguous. In this setting, we find that the most reliable approach to decide when to abstain involves quantifying repetition within sampled model outputs, rather than the model's likelihood or self-verification as used in prior work. We find this to be the case across different types of uncertainty and model scales,and with or without instruction tuning. Our results suggest that sampling-based confidence scores help calibrate answers to relatively unambiguous questions, with more dramatic improvements on ambiguous questions.
Graph contrastive learning is usually performed by first conducting Graph Data Augmentation (GDA) and then employing a contrastive learning pipeline to train GNNs. As we know that GDA is an important issue for graph contrastive learning. Various GDAs have been developed recently which mainly involve dropping or perturbing edges, nodes, node attributes and edge attributes. However, to our knowledge, it still lacks a universal and effective augmentor that is suitable for different types of graph data. To address this issue, in this paper, we first introduce the graph message representation of graph data. Based on it, we then propose a novel Graph Message Augmentation (GMA), a universal scheme for reformulating many existing GDAs. The proposed unified GMA not only gives a new perspective to understand many existing GDAs but also provides a universal and more effective graph data augmentation for graph self-supervised learning tasks. Moreover, GMA introduces an easy way to implement the mixup augmentor which is natural for images but usually challengeable for graphs. Based on the proposed GMA, we then propose a unified graph contrastive learning, termed Graph Message Contrastive Learning (GMCL), that employs attribution-guided universal GMA for graph contrastive learning. Experiments on many graph learning tasks demonstrate the effectiveness and benefits of the proposed GMA and GMCL approaches.
The advantages of pre-trained large language models (LLMs) are apparent in a variety of language processing tasks. But can a language model's knowledge be further harnessed to effectively disambiguate objects and navigate decision-making challenges within the realm of robotics? Our study reveals the LLM's aptitude for solving complex decision making challenges that are often previously modeled by Partially Observable Markov Decision Processes (POMDPs). A pivotal focus of our research is the object disambiguation capability of LLMs. We detail the integration of an LLM into a tabletop environment disambiguation task, a decision making problem where the robot's task is to discern and retrieve a user's desired object from an arbitrarily large and complex cluster of objects. Despite multiple query attempts with zero-shot prompt engineering (details can be found in the Appendix), the LLM struggled to inquire about features not explicitly provided in the scene description. In response, we have developed a few-shot prompt engineering system to improve the LLM's ability to pose disambiguating queries. The result is a model capable of both using given features when they are available and inferring new relevant features when necessary, to successfully generate and navigate down a precise decision tree to the correct object--even when faced with identical options.
Stability arguments are often used to prevent learning algorithms from having ever increasing activity and weights that hinder generalization. However, stability conditions can clash with the sparsity required to augment the energy efficiency of spiking neurons. Nonetheless it can also provide solutions. In fact, spiking Neuromorphic Computing uses binary activity to improve Artificial Intelligence energy efficiency. However, its non-smoothness requires approximate gradients, known as Surrogate Gradients (SG), to close the performance gap with Deep Learning. Several SG have been proposed in the literature, but it remains unclear how to determine the best SG for a given task and network. Thus, we aim at theoretically define the best SG, through stability arguments, to reduce the need for grid search. In fact, we show that more complex tasks and networks need more careful choice of SG, even if overall the derivative of the fast sigmoid tends to outperform the other, for a wide range of learning rates. We therefore design a stability based theoretical method to choose initialization and SG shape before training on the most common spiking neuron, the Leaky Integrate and Fire (LIF). Since our stability method suggests the use of high firing rates at initialization, which is non-standard in the neuromorphic literature, we show that high initial firing rates, combined with a sparsity encouraging loss term introduced gradually, can lead to better generalization, depending on the SG shape. Our stability based theoretical solution, finds a SG and initialization that experimentally result in improved accuracy. We show how it can be used to reduce the need of extensive grid-search of dampening, sharpness and tail-fatness of the SG. We also show that our stability concepts can be extended to be applicable on different LIF variants, such as DECOLLE and fluctuations-driven initializations.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.