When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method ($\textit{RR}$) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method ($\textit{RATD}$) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 $\rightarrow$ 61.7 acc., CommonsenseQA 63.6 $\rightarrow$ 72.7 acc., ARC-DA 31.6 $\rightarrow$ 52.1 F1, IIRC 25.5 $\rightarrow$ 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
Modern time series forecasting methods, such as Transformer and its variants, have shown strong ability in sequential data modeling. To achieve high performance, they usually rely on redundant or unexplainable structures to model complex relations between variables and tune the parameters with large-scale data. Many real-world data mining tasks, however, lack sufficient variables for relation reasoning, and therefore these methods may not properly handle such forecasting problems. With insufficient data, time series appear to be affected by many exogenous variables, and thus, the modeling becomes unstable and unpredictable. To tackle this critical issue, in this paper, we develop a novel algorithmic framework for inferring the intrinsic latent factors implied by the observable time series. The inferred factors are used to form multiple independent and predictable signal components that enable not only sparse relation reasoning for long-term efficiency but also reconstructing the future temporal data for accurate prediction. To achieve this, we introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models to infer the predictable signal components. Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting. The statistical analysis validates the predictability of the learned latent factors.
We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.
Most existing debiasing methods for multimodal models, including causal intervention and inference methods, utilize approximate heuristics to represent the biases, such as shallow features from early stages of training or unimodal features for multimodal tasks like VQA, etc., which may not be accurate. In this paper, we study bias arising from confounders in a causal graph for multimodal data and examine a novel approach that leverages causally-motivated information minimization to learn the confounder representations. Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data. Hence, minimizing the information content of features obtained from a pretrained biased model helps learn the simplest predictive features that capture the underlying data distribution. We treat these features as confounder representations and use them via methods motivated by causal theory to remove bias from models. We find that the learned confounder representations indeed capture dataset biases, and the proposed debiasing methods improve out-of-distribution (OOD) performance on multiple multimodal datasets without sacrificing in-distribution performance. Additionally, we introduce a novel metric to quantify the sufficiency of spurious features in models' predictions that further demonstrates the effectiveness of our proposed methods. Our code is available at: //github.com/Vaidehi99/CausalInfoMin
The rapidity with which generative AI has been adopted and advanced has raised legal and ethical questions related to the impact on artists rights, content production, data collection, privacy, accuracy of information, and intellectual property rights. Recent administrative and case law challenges have shown that generative AI software systems do not have independent intellectual property rights in the content that they generate. It remains to be seen whether human content creators can retain their intellectual property rights against generative AI software, its developers, operators, and owners for the misappropriation of the work of human creatives, given the metes and bounds of existing law. Early signs from various courts are mixed as to whether and to what degree the results generated by AI models meet the legal standards of infringement under existing law.
We consider a minimal extension of the language of arithmetic, such that the bounded formulas provably total in a suitably-defined theory \`a la Buss (expressed in this new language) precisely capture polytime random functions. Then, we provide two new characterizations of the semantic class BPP obtained by internalizing the error-bound check within a logical system: the first relies on measure-sensitive quantifiers, while the second is based on standard first-order quantification. This leads us to introduce a family of effectively enumerable subclasses of BPP, called BPP_T and consisting of languages captured by those probabilistic Turing machines whose underlying error can be proved bounded in the theory T. As a paradigmatic example of this approach, we establish that polynomial identity testing is in BPP_T where T=$\mathrm{I}\Delta_0+\mathrm{Exp}$ is a well-studied theory based on bounded induction.
Enforcing orthonormal or isometric property for the weight matrices has been shown to enhance the training of deep neural networks by mitigating gradient exploding/vanishing and increasing the robustness of the learned networks. However, despite its practical performance, the theoretical analysis of orthonormality in neural networks is still lacking; for example, how orthonormality affects the convergence of the training process. In this letter, we aim to bridge this gap by providing convergence analysis for training orthonormal deep linear neural networks. Specifically, we show that Riemannian gradient descent with an appropriate initialization converges at a linear rate for training orthonormal deep linear neural networks with a class of loss functions. Unlike existing works that enforce orthonormal weight matrices for all the layers, our approach excludes this requirement for one layer, which is crucial to establish the convergence guarantee. Our results shed light on how increasing the number of hidden layers can impact the convergence speed. Experimental results validate our theoretical analysis.
Language Models have ushered a new age of AI gaining traction within the NLP community as well as amongst the general population. AI's ability to make predictions, generations and its applications in sensitive decision-making scenarios, makes it even more important to study these models for possible biases that may exist and that can be exaggerated. We conduct a quality comparative study and establish a framework to evaluate language models under the premise of two kinds of biases: gender and race, in a professional setting. We find out that while gender bias has reduced immensely in newer models, as compared to older ones, racial bias still exists.
We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in //github.com/radarFudan/Curse-of-memory
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.