亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine Learning (ML) has become ubiquitous, and its deployment in Network Intrusion Detection Systems (NIDS) is inevitable due to its automated nature and high accuracy in processing and classifying large volumes of data. However, ML has been found to have several flaws, on top of them are adversarial attacks, which aim to trick ML models into producing faulty predictions. While most adversarial attack research focuses on computer vision datasets, recent studies have explored the practicality of such attacks against ML-based network security entities, especially NIDS. This paper presents two distinct contributions: a taxonomy of practicality issues associated with adversarial attacks against ML-based NIDS and an investigation of the impact of continuous training on adversarial attacks against NIDS. Our experiments indicate that continuous re-training, even without adversarial training, can reduce the effect of adversarial attacks. While adversarial attacks can harm ML-based NIDSs, our aim is to highlight that there is a significant gap between research and real-world practicality in this domain which requires attention.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Automatic speech recognition (ASR) systems have been shown to be vulnerable to adversarial examples (AEs). Recent success all assumes that users will not notice or disrupt the attack process despite the existence of music/noise-like sounds and spontaneous responses from voice assistants. Nonetheless, in practical user-present scenarios, user awareness may nullify existing attack attempts that launch unexpected sounds or ASR usage. In this paper, we seek to bridge the gap in existing research and extend the attack to user-present scenarios. We propose VRIFLE, an inaudible adversarial perturbation (IAP) attack via ultrasound delivery that can manipulate ASRs as a user speaks. The inherent differences between audible sounds and ultrasounds make IAP delivery face unprecedented challenges such as distortion, noise, and instability. In this regard, we design a novel ultrasonic transformation model to enhance the crafted perturbation to be physically effective and even survive long-distance delivery. We further enable VRIFLE's robustness by adopting a series of augmentation on user and real-world variations during the generation process. In this way, VRIFLE features an effective real-time manipulation of the ASR output from different distances and under any speech of users, with an alter-and-mute strategy that suppresses the impact of user disruption. Our extensive experiments in both digital and physical worlds verify VRIFLE's effectiveness under various configurations, robustness against six kinds of defenses, and universality in a targeted manner. We also show that VRIFLE can be delivered with a portable attack device and even everyday-life loudspeakers.

Security is essential for the Internet of Things (IoT). Cryptographic operations for authentication and encryption commonly rely on random input of high entropy and secure, tamper-resistant identities, which are difficult to obtain on constrained embedded devices. In this paper, we design and analyze a generic integration of physically unclonable functions (PUFs) into the IoT operating system RIOT that supports about 250 platforms. Our approach leverages uninitialized SRAM to act as the digital fingerprint for heterogeneous devices. We ground our design on an extensive study of PUF performance in the wild, which involves SRAM measurements on more than 700 IoT nodes that aged naturally in the real-world. We quantify static SRAM bias, as well as the aging effects of devices and incorporate the results in our system. This work closes a previously identified gap of missing statistically significant sample sizes for testing the unpredictability of PUFs. Our experiments on COTS devices of 64 kB SRAM indicate that secure random seeds derived from the SRAM PUF provide 256 Bits-, and device unique keys provide more than 128 Bits of security. In a practical security assessment we show that SRAM PUFs resist moderate attack scenarios, which greatly improves the security of low-end IoT devices.

The artifact used for evaluating the experimental results of Measuring and Mitigating Gaps in Structural Testing is publicly available on GitHub, Software Heritage and figshare, and is reusable. The artifact consists of necessary data, tools, scripts, and detailed documentation for running the experiments and reproducing the results shown in the paper. We have also provided a VirtualBox VM image allowing users to quickly setup and reproduce the results. Users are expected to be familiar using the VirtualBox software and Linux platform for evaluating or reusing the artifact.

Interpretability of Deep Learning (DL) is a barrier to trustworthy AI. Despite great efforts made by the Explainable AI (XAI) community, explanations lack robustness -- indistinguishable input perturbations may lead to different XAI results. Thus, it is vital to assess how robust DL interpretability is, given an XAI method. In this paper, we identify several challenges that the state-of-the-art is unable to cope with collectively: i) existing metrics are not comprehensive; ii) XAI techniques are highly heterogeneous; iii) misinterpretations are normally rare events. To tackle these challenges, we introduce two black-box evaluation methods, concerning the worst-case interpretation discrepancy and a probabilistic notion of how robust in general, respectively. Genetic Algorithm (GA) with bespoke fitness function is used to solve constrained optimisation for efficient worst-case evaluation. Subset Simulation (SS), dedicated to estimate rare event probabilities, is used for evaluating overall robustness. Experiments show that the accuracy, sensitivity, and efficiency of our methods outperform the state-of-the-arts. Finally, we demonstrate two applications of our methods: ranking robust XAI methods and selecting training schemes to improve both classification and interpretation robustness.

The Archive Query Log (AQL) is a previously unused, comprehensive query log collected at the Internet Archive over the last 25 years. Its first version includes 356 million queries, 166 million search result pages, and 1.7 billion search results across 550 search providers. Although many query logs have been studied in the literature, the search providers that own them generally do not publish their logs to protect user privacy and vital business data. Of the few query logs publicly available, none combines size, scope, and diversity. The AQL is the first to do so, enabling research on new retrieval models and (diachronic) search engine analyses. Provided in a privacy-preserving manner, it promotes open research as well as more transparency and accountability in the search industry.

Adversarial attacks have been proven to be potential threats to Deep Neural Networks (DNNs), and many methods are proposed to defend against adversarial attacks. However, while enhancing the robustness, the clean accuracy will decline to a certain extent, implying a trade-off existed between the accuracy and robustness. In this paper, we firstly empirically find an obvious distinction between standard and robust models in the filters' weight distribution of the same architecture, and then theoretically explain this phenomenon in terms of the gradient regularization, which shows this difference is an intrinsic property for DNNs, and thus a static network architecture is difficult to improve the accuracy and robustness at the same time. Secondly, based on this observation, we propose a sample-wise dynamic network architecture named Adversarial Weight-Varied Network (AW-Net), which focuses on dealing with clean and adversarial examples with a ``divide and rule" weight strategy. The AW-Net dynamically adjusts network's weights based on regulation signals generated by an adversarial detector, which is directly influenced by the input sample. Benefiting from the dynamic network architecture, clean and adversarial examples can be processed with different network weights, which provides the potentiality to enhance the accuracy and robustness simultaneously. A series of experiments demonstrate that our AW-Net is architecture-friendly to handle both clean and adversarial examples and can achieve better trade-off performance than state-of-the-art robust models.

The ChatGPT, a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large Language Models (LLMs) with billions of parameters. LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks, which profoundly impact various fields. This paper mainly discusses the future applications of LLMs in dentistry. We introduce two primary LLM deployment methods in dentistry, including automated dental diagnosis and cross-modal dental diagnosis, and examine their potential applications. Especially, equipped with a cross-modal encoder, a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations. We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application. While LLMs offer significant potential benefits, the challenges, such as data privacy, data quality, and model bias, need further study. Overall, LLMs have the potential to revolutionize dental diagnosis and treatment, which indicates a promising avenue for clinical application and research in dentistry.

To foster collaboration and inclusivity in Open Source Software (OSS) projects, it is crucial to understand and detect patterns of toxic language that may drive contributors away, especially those from underrepresented communities. Although machine learning-based toxicity detection tools trained on domain-specific data have shown promise, their design lacks an understanding of the unique nature and triggers of toxicity in OSS discussions, highlighting the need for further investigation. In this study, we employ Moral Foundations Theory to examine the relationship between moral principles and toxicity in OSS. Specifically, we analyze toxic communications in GitHub issue threads to identify and understand five types of moral principles exhibited in text, and explore their potential association with toxic behavior. Our preliminary findings suggest a possible link between moral principles and toxic comments in OSS communications, with each moral principle associated with at least one type of toxicity. The potential of MFT in toxicity detection warrants further investigation.

Artificial Intelligence (AI) refers to the intelligence demonstrated by machines, and within the realm of AI, Machine Learning (ML) stands as a notable subset. ML employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously. Notably, AI holds immense potential in the field of software engineering, particularly in project management and planning. In this literature survey, we explore the use of AI in Software Engineering and summarize previous works in this area. We first review eleven different publications related to this subject, then compare the surveyed works. We then comment on the possible challenges present in the utilization of AI in software engineering and suggest possible further research avenues and the ways in which AI could evolve with software engineering in the future.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司