亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Performative prediction is a recently proposed framework where predictions guide decision-making and hence influence future data distributions. Such performative phenomena are ubiquitous in various areas, such as transportation, finance, public policy, and recommendation systems. To date, work on performative prediction has only focused on unconstrained scenarios, neglecting the fact that many real-world learning problems are subject to constraints. This paper bridges this gap by studying performative prediction under inequality constraints. Unlike most existing work that provides only performative stable points, we aim to find the optimal solutions. Anticipating performative gradients is a challenging task, due to the agnostic performative effect on data distributions. To address this issue, we first develop a robust primal-dual framework that requires only approximate gradients up to a certain accuracy, yet delivers the same order of performance as the stochastic primal-dual algorithm without performativity. Based on this framework, we then propose an adaptive primal-dual algorithm for location families. Our analysis demonstrates that the proposed adaptive primal-dual algorithm attains $\ca{O}(\sqrt{T})$ regret and constraint violations, using only $\sqrt{T} + 2T$ samples, where $T$ is the time horizon. To our best knowledge, this is the first study and analysis on the optimality of the performative prediction problem under inequality constraints. Finally, we validate the effectiveness of our algorithm and theoretical results through numerical simulations.

相關內容

We consider the problem of testing whether a single coefficient is equal to zero in fixed-design linear models under a moderately high-dimensional regime, where the dimension of covariates $p$ is allowed to be in the same order of magnitude as sample size $n$. In this regime, to achieve finite-population validity, existing methods usually require strong distributional assumptions on the noise vector (such as Gaussian or rotationally invariant), which limits their applications in practice. In this paper, we propose a new method, called residual permutation test (RPT), which is constructed by projecting the regression residuals onto the space orthogonal to the union of the column spaces of the original and permuted design matrices. RPT can be proved to achieve finite-population size validity under fixed design with just exchangeable noises, whenever $p < n / 2$. Moreover, RPT is shown to be asymptotically powerful for heavy tailed noises with bounded $(1+t)$-th order moment when the true coefficient is at least of order $n^{-t/(1+t)}$ for $t \in [0,1]$. We further proved that this signal size requirement is essentially rate-optimal in the minimax sense. Numerical studies confirm that RPT performs well in a wide range of simulation settings with normal and heavy-tailed noise distributions.

We propose a metaphor detection architecture that is structured around two main modules: an expectation component that estimates representations of literal word expectations given a context, and a realization component that computes representations of actual word meanings in context. The overall architecture is trained to learn expectation-realization (ER) patterns that characterize metaphorical uses of words. When evaluated on three metaphor datasets for within distribution, out of distribution, and novel metaphor generalization, the proposed method is shown to obtain results that are competitive or better than state-of-the art. Further increases in metaphor detection accuracy are obtained through ensembling of ER models.

We propose a novel interpretable deep neural network for text classification, called ProtoryNet, based on a new concept of prototype trajectories. Motivated by the prototype theory in modern linguistics, ProtoryNet makes a prediction by finding the most similar prototype for each sentence in a text sequence and feeding an RNN backbone with the proximity of each sentence to the corresponding active prototype. The RNN backbone then captures the temporal pattern of the prototypes, which we refer to as prototype trajectories. Prototype trajectories enable intuitive and fine-grained interpretation of the reasoning process of the RNN model, in resemblance to how humans analyze texts. We also design a prototype pruning procedure to reduce the total number of prototypes used by the model for better interpretability. Experiments on multiple public data sets show that ProtoryNet is more accurate than the baseline prototype-based deep neural net and reduces the performance gap compared to state-of-the-art black-box models. In addition, after prototype pruning, the resulting ProtoryNet models only need less than or around 20 prototypes for all datasets, which significantly benefits interpretability. Furthermore, we report a survey result indicating that human users find ProtoryNet more intuitive and easier to understand than other prototype-based methods.

Recently, large-scale pre-trained vision-language models have presented benefits for alleviating class imbalance in long-tailed recognition. However, the long-tailed data distribution can corrupt the representation space, where the distance between head and tail categories is much larger than the distance between two tail categories. This uneven feature space distribution causes the model to exhibit unclear and inseparable decision boundaries on the uniformly distributed test set, which lowers its performance. To address these challenges, we propose the uniformly category prototype-guided vision-language framework to effectively mitigate feature space bias caused by data imbalance. Especially, we generate a set of category prototypes uniformly distributed on a hypersphere. Category prototype-guided mechanism for image-text matching makes the features of different classes converge to these distinct and uniformly distributed category prototypes, which maintain a uniform distribution in the feature space, and improve class boundaries. Additionally, our proposed irrelevant text filtering and attribute enhancement module allows the model to ignore irrelevant noisy text and focus more on key attribute information, thereby enhancing the robustness of our framework. In the image recognition fine-tuning stage, to address the positive bias problem of the learnable classifier, we design the class feature prototype-guided classifier, which compensates for the performance of tail classes while maintaining the performance of head classes. Our method outperforms previous vision-language methods for long-tailed learning work by a large margin and achieves state-of-the-art performance.

Wasserstein distributionally robust estimators have emerged as powerful models for prediction and decision-making under uncertainty. These estimators provide attractive generalization guarantees: the robust objective obtained from the training distribution is an exact upper bound on the true risk with high probability. However, existing guarantees either suffer from the curse of dimensionality, are restricted to specific settings, or lead to spurious error terms. In this paper, we show that these generalization guarantees actually hold on general classes of models, do not suffer from the curse of dimensionality, and can even cover distribution shifts at testing. We also prove that these results carry over to the newly-introduced regularized versions of Wasserstein distributionally robust problems.

Recent progress in vision language foundation models has shown their ability to understand multimodal data and resolve complicated vision language tasks, including robotics manipulation. We seek a straightforward way of making use of existing vision-language models (VLMs) with simple fine-tuning on robotics data. To this end, we derive a simple and novel vision-language manipulation framework, dubbed RoboFlamingo, built upon the open-source VLMs, OpenFlamingo. Unlike prior works, RoboFlamingo utilizes pre-trained VLMs for single-step vision-language comprehension, models sequential history information with an explicit policy head, and is slightly fine-tuned by imitation learning only on language-conditioned manipulation datasets. Such a decomposition provides RoboFlamingo the flexibility for open-loop control and deployment on low-performance platforms. By exceeding the state-of-the-art performance with a large margin on the tested benchmark, we show RoboFlamingo can be an effective and competitive alternative to adapt VLMs to robot control. Our extensive experimental results also reveal several interesting conclusions regarding the behavior of different pre-trained VLMs on manipulation tasks. We believe RoboFlamingo has the potential to be a cost-effective and easy-to-use solution for robotics manipulation, empowering everyone with the ability to fine-tune their own robotics policy.

Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet, which demonstrates the importance of prototypes. Although they achieve relatively good performance, the effect of multimodal information is ignored, e.g. label texts. In this work, we propose a novel MultimOdal PRototype-ENhanced Network (MORN), which uses the semantic information of label texts as multimodal information to enhance prototypes. A CLIP visual encoder and a frozen CLIP text encoder are introduced to obtain features with good multimodal initialization. Then in the visual flow, visual prototypes are computed by a Temporal-Relational CrossTransformer (TRX) module for example. In the text flow, a semantic-enhanced (SE) module and an inflating operation are used to obtain text prototypes. The final multimodal prototypes are then computed by a multimodal prototype-enhanced (MPE) module. Besides, we define a PRototype SImilarity DiffErence (PRIDE) to evaluate the quality of prototypes, which is used to verify our improvement on the prototype level and effectiveness of MORN. We conduct extensive experiments on four popular datasets, and MORN achieves state-of-the-art results on HMDB51, UCF101, Kinetics and SSv2. When plugging PRIDE into the training stage, the performance can be further improved.

We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司