BCH codes form an important subclass of cyclic codes, and are widely used in compact discs, digital audio tapes and other data storage systems to improve data reliability. As far as we know, there are few results on $q$-ary BCH codes of length $n=\frac{q^{m}+1}{q+1}$. This is because it is harder to deal with BCH codes of such length. In this paper, we study $q$-ary BCH codes with lengths $n=\frac{q^{m}+1}{q+1}$ and $n=q^m+1$. These two classes of BCH codes are always LCD codes. For $n=\frac{q^{m}+1}{q+1}$, the dimensions of narrow-sense BCH codes of length $n$ with designed distance $\delta=\ell q^{\frac{m-1}{2}}+1$ are determined, where $q>2$ and $2\leq \ell \leq q-1$. Moreover, the largest coset leader is given for $m=3$ and the first two largest coset leaders are given for $q=2$. The parameters of BCH codes related to the first few largest coset leaders are investigated. Some binary BCH codes of length $n=\frac{2^m+1}{3}$ have optimal parameters. For ternary narrow-sense BCH codes of length $n=3^m+1$, a lower bound on the minimum distance of their dual codes is developed, which is good in some cases.
This paper presents a novel stochastic optimisation methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimisation approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum-a-posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise variance as well as any regularisation parameters. The marginal likelihood of the blur, noise variance, and regularisation parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimisation scheme, which iteratively solves such integrals by using a Moreau-Yosida regularised unadjusted Langevin Markov chain Monte Carlo algorithm. This optimisation strategy can be easily and efficiently applied to any model that is log-concave, and by using the same gradient and proximal operators that are required to compute the maximum-a-posteriori solution by convex optimisation. We provide convergence guarantees for the proposed optimisation scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art.
The paper presents an evaluation of popular audio inpainting methods based on autoregressive modelling, namely, extrapolation-based and Janssen methods. A novel variant of the Janssen method suitable for gap inpainting is also proposed. The main differences between the particular popular approaches are pointed out, and a mid-scale computational experiment is presented. The results demonstrate the importance of the choice of the AR model estimator and the suitability of the new gap-wise Janssen method.
We propose some new results on the comparison of the minimum or maximum order statistic from a random number of non-identical random variables. Under the non-identical set-up, with certain conditions, we prove that random minimum (maximum) of one system dominates the other in hazard rate (reversed hazard rate) order. Further, we prove variation diminishing property (Karlin [8]) for all possible restrictions to derive the new results.
Arguably, geodesics are the most important geometric objects on a differentiable manifold. They describe candidates for shortest paths and are guaranteed to be unique shortest paths when the starting velocity stays within the so-called injectivity radius of the manifold. In this work, we investigate the injectivity radius of the Stiefel manifold under the canonical metric. The Stiefel manifold $St(n,p)$ is the set of rectangular matrices of dimension $n$-by-$p$ with orthogonal columns, sometimes also called the space of orthogonal $p$-frames in $\mathbb{R}^n$. Using a standard curvature argument, Rentmeesters has shown in 2013 that the injectivity radius of the Stiefel manifold is bounded by $\sqrt{\frac{4}{5}}\pi$. It is an open question, whether this bound is sharp. With the definition of the injectivity radius via cut points of geodesics, we gain access to the information of the injectivity radius by investigating geodesics. More precisely, we consider the behavior of special variations of geodesics, called Jacobi fields. By doing so, we are able to present an explicit example of a cut point. In addition, since the theoretical analysis of geodesics for cut points and especially conjugate points as a type of cut points is difficult, we investigate the question of the sharpness of the bound by means of numerical experiments.
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to our knowledge, the first known family of codes that can be decoded in nearly linear time, even as they approach the list decoding capacity. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list-decoding. It is known that for every $\epsilon >0$, and rate $R \in (0,1)$, there exist explicit families of these codes that have rate $R$ and can be list-decoded from a $(1-R-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory, 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above tasks in nearly linear time. Our algorithms have two main components. The first builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a nearly linear time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design nearly-linear time algorithms for two natural algebraic problems. The first algorithm solves linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ where $Q$ has the form $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i = 0}^m Q_i(x)\cdot y_i$. The second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$ where $\gamma$ is a high-order field element. These algorithms can be viewed as generalizations of classical algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.
We discuss the inhomogeneous spiked Wigner model, a theoretical framework recently introduced to study structured noise in various learning scenarios, through the prism of random matrix theory, with a specific focus on its spectral properties. Our primary objective is to find an optimal spectral method and to extend the celebrated \cite{BBP} (BBP) phase transition criterion -- well-known in the homogeneous case -- to our inhomogeneous, block-structured, Wigner model. We provide a thorough rigorous analysis of a transformed matrix and show that the transition for the appearance of 1) an outlier outside the bulk of the limiting spectral distribution and 2) a positive overlap between the associated eigenvector and the signal, occurs precisely at the optimal threshold, making the proposed spectral method optimal within the class of iterative methods for the inhomogeneous Wigner problem.
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight, which uses photon time-of-flight information encoded in light after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is highly possibility to be degraded due to noises and distortions. In this paper, we propose novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (signal and object)-domain curvature regularization model. In what follows, we develop efficient optimization algorithms relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, for which all solvers can be implemented on GPUs. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. Based on GPU computing, our algorithm is the most effective among iterative methods, balancing reconstruction quality and computational time. All our codes and data are available at //github.com/Duanlab123/CurvNLOS.
Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. To address this, we take inspiration from the human brain, in which planning is accomplished via the recurrent interaction of specialized modules in the prefrontal cortex (PFC). These modules perform functions such as conflict monitoring, state prediction, state evaluation, task decomposition, and task coordination. We find that LLMs are sometimes capable of carrying out these functions in isolation, but struggle to autonomously coordinate them in the service of a goal. Therefore, we propose a black box architecture with multiple LLM-based (GPT-4) modules. The architecture improves planning through the interaction of specialized PFC-inspired modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate the combined architecture on three challenging planning tasks -- graph traversal, Tower of Hanoi, and logistics -- finding that it yields significant improvements over standard LLM methods (e.g., zero-shot prompting, in-context learning, and chain-of-thought). These results demonstrate the benefit of utilizing knowledge from cognitive neuroscience to improve planning in LLMs.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.