In the era of social media, people frequently share their own opinions online on various issues and also in the way, get exposed to others' opinions. Be it for selective exposure of news feed recommendation algorithms or our own inclination to listen to opinions that support ours, the result is that we get more and more exposed to opinions closer to ours. Further, any population is inherently heterogeneous i.e. people will hold a varied range of opinions regarding a topic and showcase a varied range of openness to get influenced by others. In this paper, we demonstrate the different behavior put forward by open- and close-minded agents towards an issue, when allowed to freely intermix and communicate. We have shown that the intermixing among people leads to formation of opinion echo chambers i.e. a small closed network of people who hold similar opinions and are not affected by opinions of people outside the network. Echo chambers are evidently harmful for a society because it inhibits free healthy communication among all and thus, prevents exchange of opinions, spreads misinformation and increases extremist beliefs. This calls for reduction in echo chambers, because a total consensus of opinion is neither possible nor is welcome. We show that the number of echo chambers depends on the number of close-minded agents and cannot be lessened by increasing the number of open-minded agents. We identify certain 'moderate'-minded agents, who possess the capability of manipulating and reducing the number of echo chambers. The paper proposes an algorithm for intelligent placement of moderate-minded agents in the opinion-time spectrum by which the opinion echo chambers can be maximally reduced. With various experimental setups, we demonstrate that the proposed algorithm fares well when compared to placement of other agents (open- or close-minded) and random placement of 'moderate'-minded agents.
Surgical robot automation has attracted increasing research interest over the past decade, expecting its potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied intelligence has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant research. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how the human demonstrations would affect policy learning. In this work, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. We showcase the improvement of our simulation environment with the designed new features, and validate effectiveness of incorporating human factors in embodied intelligence through the use of human demonstrations and reinforcement learning as a representative example. Promising results are obtained in terms of learning efficiency. Lastly, five new surgical robot training tasks are developed and released, with which we hope to pave the way for future research on surgical embodied intelligence. Our learning platform is publicly released and will be continuously updated in the website: //med-air.github.io/SurRoL.
We introduce hybrid execution in multi-agent reinforcement learning (MARL), a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time by taking advantage of information-sharing among the agents. Under hybrid execution, the communication level can range from a setting in which no communication is allowed between agents (fully decentralized), to a setting featuring full communication (fully centralized), but the agents do not know beforehand which communication level they will encounter at execution time. To formalize our setting, we define a new class of multi-agent partially observable Markov decision processes (POMDPs) that we name hybrid-POMDPs, which explicitly model a communication process between the agents. We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations at execution time. We evaluate MARO on standard scenarios and extensions of previous benchmarks tailored to emphasize the negative impact of partial observability in MARL. Experimental results show that our method consistently outperforms relevant baselines, allowing agents to act with faulty communication while successfully exploiting shared information.
Over the past decade, machine learning has revolutionized computers' ability to analyze text through flexible computational models. Due to their structural similarity to written language, transformer-based architectures have also shown promise as tools to make sense of a range of multi-variate sequences from protein-structures, music, electronic health records to weather-forecasts. We can also represent human lives in a way that shares this structural similarity to language. From one perspective, lives are simply sequences of events: People are born, visit the pediatrician, start school, move to a new location, get married, and so on. Here, we exploit this similarity to adapt innovations from natural language processing to examine the evolution and predictability of human lives based on detailed event sequences. We do this by drawing on arguably the most comprehensive registry data in existence, available for an entire nation of more than six million individuals across decades. Our data include information about life-events related to health, education, occupation, income, address, and working hours, recorded with day-to-day resolution. We create embeddings of life-events in a single vector space showing that this embedding space is robust and highly structured. Our models allow us to predict diverse outcomes ranging from early mortality to personality nuances, outperforming state-of-the-art models by a wide margin. Using methods for interpreting deep learning models, we probe the algorithm to understand the factors that enable our predictions. Our framework allows researchers to identify new potential mechanisms that impact life outcomes and associated possibilities for personalized interventions.
Traditional click-through rate (CTR) prediction models convert the tabular data into one-hot vectors and leverage the collaborative relations among features for inferring user's preference over items. This modeling paradigm discards the essential semantic information. Though some recent works like P5 and M6-Rec have explored the potential of using Pre-trained Language Models (PLMs) to extract semantic signals for CTR prediction, they are computationally expensive and suffer from low efficiency. Besides, the beneficial collaborative relations are not considered, hindering the recommendation performance. To solve these problems, in this paper, we propose a novel framework \textbf{CTRL}, which is industrial friendly and model-agnostic with high training and inference efficiency. Specifically, the original tabular data is first converted into textual data. Both tabular data and converted textual data are regarded as two different modalities and are separately fed into the collaborative CTR model and pre-trained language model. A cross-modal knowledge alignment procedure is performed to fine-grained align and integrate the collaborative and semantic signals, and the lightweight collaborative model can be deployed online for efficient serving after fine-tuned with supervised signals. Experimental results on three public datasets show that CTRL outperforms the SOTA CTR models significantly. Moreover, we further verify its effectiveness on a large-scale industrial recommender system.
Industry 4.0 is driven by demands like shorter time-to-market, mass customization of products, and batch size one production. Reinforcement Learning (RL), a machine learning paradigm shown to possess a great potential in improving and surpassing human level performance in numerous complex tasks, allows coping with the mentioned demands. In this paper, we present an OPC UA based Operational Technology (OT)-aware RL architecture, which extends the standard RL setting, combining it with the setting of digital twins. Moreover, we define an OPC UA information model allowing for a generalized plug-and-play like approach for exchanging the RL agent used. In conclusion, we demonstrate and evaluate the architecture, by creating a proof of concept. By means of solving a toy example, we show that this architecture can be used to determine the optimal policy using a real control system.
The Social Internet of Things (SIoT), is revolutionizing how we interact with our everyday lives. By adding the social dimension to connecting devices, the SIoT has the potential to drastically change the way we interact with smart devices. This connected infrastructure allows for unprecedented levels of convenience, automation, and access to information, allowing us to do more with less effort. However, this revolutionary new technology also brings an eager need for service recommendation systems. As the SIoT grows in scope and complexity, it becomes increasingly important for businesses and individuals, and SIoT objects alike to have reliable sources for products, services, and information that are tailored to their specific needs. Few works have been proposed to provide service recommendations for SIoT environments. However, these efforts have been confined to only focusing on modeling user-item interactions using contextual information, devices' SIoT relationships, and correlation social groups but these schemes do not account for latent semantic item-item structures underlying the sparse multi-modal contents in SIoT environment. In this paper, we propose a latent-based SIoT recommendation system that learns item-item structures and aggregates multiple modalities to obtain latent item graphs which are then used in graph convolutions to inject high-order affinities into item representations. Experiments showed that the proposed recommendation system outperformed state-of-the-art SIoT recommendation methods and validated its efficacy at mining latent relationships from multi-modal features.
Social media is awash with hateful content, much of which is often veiled with linguistic and topical diversity. The benchmark datasets used for hate speech detection do not account for such divagation as they are predominantly compiled using hate lexicons. However, capturing hate signals becomes challenging in neutrally-seeded malicious content. Thus, designing models and datasets that mimic the real-world variability of hate warrants further investigation. To this end, we present GOTHate, a large-scale code-mixed crowdsourced dataset of around 51k posts for hate speech detection from Twitter. GOTHate is neutrally seeded, encompassing different languages and topics. We conduct detailed comparisons of GOTHate with the existing hate speech datasets, highlighting its novelty. We benchmark it with 10 recent baselines. Our extensive empirical and benchmarking experiments suggest that GOTHate is hard to classify in a text-only setup. Thus, we investigate how adding endogenous signals enhances the hate speech detection task. We augment GOTHate with the user's timeline information and ego network, bringing the overall data source closer to the real-world setup for understanding hateful content. Our proposed solution HEN-mBERT is a modular, multilingual, mixture-of-experts model that enriches the linguistic subspace with latent endogenous signals from history, topology, and exemplars. HEN-mBERT transcends the best baseline by 2.5% and 5% in overall macro-F1 and hate class F1, respectively. Inspired by our experiments, in partnership with Wipro AI, we are developing a semi-automated pipeline to detect hateful content as a part of their mission to tackle online harm.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.