亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning models usually require sufficient training data to achieve high accuracy, but obtaining labeled data can be time-consuming and labor-intensive. Here we introduce a template-based training method to train a 3D U-Net model from scratch using only one population-averaged brain MRI template and its associated segmentation label. The process incorporated visual perception augmentation to enhance the model's robustness in handling diverse image inputs and mitigating overfitting. Leveraging this approach, we trained 3D U-Net models for mouse, rat, marmoset, rhesus, and human brain MRI to achieve segmentation tasks such as skull-stripping, brain segmentation, and tissue probability mapping. This tool effectively addresses the limited availability of training data and holds significant potential for expanding deep learning applications in image analysis, providing researchers with a unified solution to train deep neural networks with only one image sample.

相關內容

Modeling Neural Radiance Fields for fast-moving deformable objects from visual data alone is a challenging problem. A major issue arises due to the high deformation and low acquisition rates. To address this problem, we propose to use event cameras that offer very fast acquisition of visual change in an asynchronous manner. In this work, we develop a novel method to model the deformable neural radiance fields using RGB and event cameras. The proposed method uses the asynchronous stream of events and calibrated sparse RGB frames. In our setup, the camera pose at the individual events required to integrate them into the radiance fields remains unknown. Our method jointly optimizes these poses and the radiance field. This happens efficiently by leveraging the collection of events at once and actively sampling the events during learning. Experiments conducted on both realistically rendered graphics and real-world datasets demonstrate a significant benefit of the proposed method over the state-of-the-art and the compared baseline. This shows a promising direction for modeling deformable neural radiance fields in real-world dynamic scenes.

Explicit finite-sample statistical guarantees on model performance are an important ingredient in responsible machine learning. Previous work has focused mainly on bounding either the expected loss of a predictor or the probability that an individual prediction will incur a loss value in a specified range. However, for many high-stakes applications, it is crucial to understand and control the dispersion of a loss distribution, or the extent to which different members of a population experience unequal effects of algorithmic decisions. We initiate the study of distribution-free control of statistical dispersion measures with societal implications and propose a simple yet flexible framework that allows us to handle a much richer class of statistical functionals beyond previous work. Our methods are verified through experiments in toxic comment detection, medical imaging, and film recommendation.

Modern ML applications increasingly rely on complex deep learning models and large datasets. There has been an exponential growth in the amount of computation needed to train the largest models. Therefore, to scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model. However, a distributed setup is prone to Byzantine failures of individual nodes, components, and software. With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems. We define the quality of workers as reconstruction ratios $\in (0,1]$, and formulate aggregation as a Maximum Likelihood Estimation procedure using Beta densities. We show that the Regularized form of log-likelihood wrt subspace can be approximately solved using iterative least squares solver, and provide convergence guarantees using recent Convex Optimization landscape results. Our empirical findings demonstrate that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators. We evaluate our method in a distributed setup with a parameter server, and show simultaneous improvements in communication efficiency and accuracy across various tasks. The code is publicly available at //github.com/hamidralmasi/FlagAggregator

Medical image segmentation with deep learning is an important and widely studied topic because segmentation enables quantifying target structure size and shape that can help in disease diagnosis, prognosis, surgery planning, and understanding. Recent advances in the foundation VLMs and their adaptation to segmentation tasks in natural images with VLSMs have opened up a unique opportunity to build potentially powerful segmentation models for medical images that enable providing helpful information via language prompt as input, leverage the extensive range of other medical imaging datasets by pooled dataset training, adapt to new classes, and be robust against out-of-distribution data with human-in-the-loop prompting during inference. Although transfer learning from natural to medical images for image-only segmentation models has been studied, no studies have analyzed how the joint representation of vision-language transfers to medical images in segmentation problems and understand gaps in leveraging their full potential. We present the first benchmark study on transfer learning of VLSMs to 2D medical images with thoughtfully collected 11 existing 2D medical image datasets of diverse modalities with carefully presented 9 types of language prompts from 14 attributes. Our results indicate that VLSMs trained in natural image-text pairs transfer reasonably to the medical domain in zero-shot settings when prompted appropriately for non-radiology photographic modalities; when finetuned, they obtain comparable performance to conventional architectures, even in X-rays and ultrasound modalities. However, the additional benefit of language prompts during finetuning may be limited, with image features playing a more dominant role; they can better handle training on pooled datasets combining diverse modalities and are potentially more robust to domain shift than the conventional segmentation models.

While image data starts to enjoy the simple-but-effective self-supervised learning scheme built upon masking and self-reconstruction objective thanks to the introduction of tokenization procedure and vision transformer backbone, convolutional neural networks as another important and widely-adopted architecture for image data, though having contrastive-learning techniques to drive the self-supervised learning, still face the difficulty of leveraging such straightforward and general masking operation to benefit their learning process significantly. In this work, we aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks as an extra augmentation method. In addition to the additive but unwanted edges (between masked and unmasked regions) as well as other adverse effects caused by the masking operations for ConvNets, which have been discussed by prior works, we particularly identify the potential problem where for one view in a contrastive sample-pair the randomly-sampled masking regions could be overly concentrated on important/salient objects thus resulting in misleading contrastiveness to the other view. To this end, we propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background for realizing the masking-based augmentation. Moreover, we introduce hard negative samples by masking larger regions of salient patches in an input image. Extensive experiments conducted on various datasets, contrastive learning mechanisms, and downstream tasks well verify the efficacy as well as the superior performance of our proposed method with respect to several state-of-the-art baselines.

Structure learning is the crux of causal inference. Notably, causal discovery (CD) algorithms are brittle when data is scarce, possibly inferring imprecise causal relations that contradict expert knowledge -- especially when considering latent confounders. To aggravate the issue, most CD methods do not provide uncertainty estimates, making it hard for users to interpret results and improve the inference process. Surprisingly, while CD is a human-centered affair, no works have focused on building methods that both 1) output uncertainty estimates that can be verified by experts and 2) interact with those experts to iteratively refine CD. To solve these issues, we start by proposing to sample (causal) ancestral graphs proportionally to a belief distribution based on a score function, such as the Bayesian information criterion (BIC), using generative flow networks. Then, we leverage the diversity in candidate graphs and introduce an optimal experimental design to iteratively probe the expert about the relations among variables, effectively reducing the uncertainty of our belief over ancestral graphs. Finally, we update our samples to incorporate human feedback via importance sampling. Importantly, our method does not require causal sufficiency (i.e., unobserved confounders may exist). Experiments with synthetic observational data show that our method can accurately sample from distributions over ancestral graphs and that we can greatly improve inference quality with human aid.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司