In this paper we present a new "external verifier" for the Lean theorem prover, written in Lean itself. This is the first complete verifier for Lean 4 other than the reference implementation in C++ used by Lean itself, and our new verifier is competitive with the original, running between 20% and 50% slower and usable to verify all of Lean's mathlib library, forming an additional step in Lean's aim to self-host the full elaborator and compiler. Moreover, because the verifier is written in a language which admits formal verification, it is possible to state and prove properties about the kernel itself, and we report on some initial steps taken in this direction to formalize the Lean type theory abstractly and show that the kernel correctly implements this theory, to eliminate the possibility of implementation bugs in the kernel and increase the trustworthiness of proofs conducted in it. This work is still ongoing but we plan to use this project to help justify any future changes to the kernel and type theory and ensure unsoundness does not sneak in through either the abstract theory or implementation bugs.
Formalizing creativity-related concepts has been a long-term goal of Computational Creativity. To the same end, we explore Formal Learning Theory in the context of creativity. We provide an introduction to the main concepts of this framework and a re-interpretation of terms commonly found in creativity discussions, proposing formal definitions for novelty and transformational creativity. This formalisation marks the beginning of a research branch we call Formal Creativity Theory, exploring how learning can be included as preparation for exploratory behaviour and how learning is a key part of transformational creative behaviour. By employing these definitions, we argue that, while novelty is neither necessary nor sufficient for transformational creativity in general, when using an inspiring set, rather than a sequence of experiences, an agent actually requires novelty for transformational creativity to occur.
We present an approach for the efficient implementation of self-adjusting multi-rate Runge-Kutta methods and we extend the previously available stability analyses of these methods to the case of an arbitrary number of sub-steps for the active components. We propose a physically motivated model problem that can be used to assess the stability of different multi-rate versions of standard Runge-Kutta methods and the impact of different interpolation methods for the latent variables. Finally, we present the results of several numerical experiments, performed with implementations of the proposed methods in the framework of the \textit{OpenModelica} open-source modelling and simulation software, which demonstrate the efficiency gains deriving from the use of the proposed multi-rate approach for physical modelling problems with multiple time scales.
This paper presents a new approach for batch Bayesian Optimization (BO) called Thompson Sampling-Regret to Sigma Ratio directed sampling (TS-RSR), where we sample a new batch of actions by minimizing a Thompson Sampling approximation of a regret to uncertainty ratio. Our sampling objective is able to coordinate the actions chosen in each batch in a way that minimizes redundancy between points whilst focusing on points with high predictive means or high uncertainty. Theoretically, we provide rigorous convergence guarantees on our algorithm's regret, and numerically, we demonstrate that our method attains state-of-the-art performance on a range of challenging synthetic and realistic test functions, where it outperforms several competitive benchmark batch BO algorithms.
This article gives a conceptual review of the e-value, ev(H|X) -- the epistemic value of hypothesis H given observations X. This statistical significance measure was developed in order to allow logically coherent and consistent tests of hypotheses, including sharp or precise hypotheses, via the Full Bayesian Significance Test (FBST). Arguments of analysis allow a full characterization of this statistical test by its logical or compositional properties, showing a mutual complementarity between results of mathematical statistics and the logical desiderata lying at the foundations of this theory.
In this paper, to the best of our knowledge, we make the first attempt at studying the parametric semilinear elliptic eigenvalue problems with the parametric coefficient and some power-type nonlinearities. The parametric coefficient is assumed to have an affine dependence on the countably many parameters with an appropriate class of sequences of functions. In this paper, we obtain the upper bound estimation for the mixed derivatives of the ground eigenpairs that has the same form obtained recently for the linear eigenvalue problem. The three most essential ingredients for this estimation are the parametric analyticity of the ground eigenpairs, the uniform boundedness of the ground eigenpairs, and the uniform positive differences between ground eigenvalues of linear operators. All these three ingredients need new techniques and a careful investigation of the nonlinear eigenvalue problem that will be presented in this paper. As an application, considering each parameter as a uniformly distributed random variable, we estimate the expectation of the eigenpairs using a randomly shifted quasi-Monte Carlo lattice rule and show the dimension-independent error bound.
The paper explores the Biased Random-Key Genetic Algorithm (BRKGA) in the domain of logistics and vehicle routing. Specifically, the application of the algorithm is contextualized within the framework of the Vehicle Routing Problem with Occasional Drivers and Time Window (VRPODTW) that represents a critical challenge in contemporary delivery systems. Within this context, BRKGA emerges as an innovative solution approach to optimize routing plans, balancing cost-efficiency with operational constraints. This research introduces a new BRKGA, characterized by a variable mutant population which can vary from generation to generation, named BRKGA-VM. This novel variant was tested to solve a VRPODTW. For this purpose, an innovative specific decoder procedure was proposed and implemented. Furthermore, a hybridization of the algorithm with a Variable Neighborhood Descent (VND) algorithm has also been considered, showing an improvement of problem-solving capabilities. Computational results show a better performances in term of effectiveness over a previous version of BRKGA, denoted as MP. The improved performance of BRKGA-VM is evident from its ability to optimize solutions across a wide range of scenarios, with significant improvements observed for each type of instance considered. The analysis also reveals that VM achieves preset goals more quickly compared to MP, thanks to the increased variability induced in the mutant population which facilitates the exploration of new regions of the solution space. Furthermore, the integration of VND has shown an additional positive impact on the quality of the solutions found.
In this article, we employ the construction of the time-marching Discontinuous Petrov-Galerkin (DPG) scheme we developed for linear problems to derive high-order multistage DPG methods for non-linear systems of ordinary differential equations. The methodology extends to abstract evolution equations in Banach spaces, including a class of nonlinear partial differential equations. We present three nested multistage methods: the hybrid Euler method and the two- and three-stage DPG methods. We employ a linearization of the problem as in exponential Rosenbrock methods, so we need to compute exponential actions of the Jacobian that change from time steps. The key point of our construction is that one of the stages can be post-processed from another without an extra exponential step. Therefore, the class of methods we introduce is computationally cheaper than the classical exponential Rosenbrock methods. We provide a full convergence proof to show that the methods are second, third, and fourth-order accurate, respectively. We test the convergence in time of our methods on a 2D + time semi-linear partial differential equation after a semidiscretization in space.
Contraction coefficients give a quantitative strengthening of the data processing inequality. As such, they have many natural applications whenever closer analysis of information processing is required. However, it is often challenging to calculate these coefficients. As a remedy we discuss a quantum generalization of Doeblin coefficients. These give an efficiently computable upper bound on many contraction coefficients. We prove several properties and discuss generalizations and applications. In particular, we give additional stronger bounds for PPT channels and introduce reverse Doeblin coefficients that bound certain expansion coefficients.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.