亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The use of partially automated driving systems raises concerns about potential responsibility issues, posing risk to the system safety, acceptance, and adoption of these technologies. The concept of meaningful human control has emerged in response to the responsibility gap problem, requiring the fulfillment of two conditions, tracking and tracing. While this concept has provided important philosophical and design insights on automated driving systems, there is currently little knowledge on how meaningful human control relates to subjective experiences of actual users of these systems. To address this gap, our study aimed to investigate the alignment between the degree of meaningful human control and drivers' perceptions of safety and trust in a real-world partially automated driving system. We utilized previously collected data from interviews with Tesla "Full Self-Driving" (FSD) Beta users, investigating the alignment between the user perception and how well the system was tracking the users' reasons. We found that tracking of users' reasons for driving tasks (such as safe maneuvers) correlated with perceived safety and trust, albeit with notable exceptions. Surprisingly, failure to track lane changing and braking reasons was not necessarily associated with negative perceptions of safety. However, the failure of the system to track expected maneuvers in dangerous situations always resulted in low trust and perceived lack of safety. Overall, our analyses highlight alignment points but also possible discrepancies between perceived safety and trust on the one hand, and meaningful human control on the other hand. Our results can help the developers of automated driving technology to design systems under meaningful human control and are perceived as safe and trustworthy.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

This two-part paper studies a point-to-point resonant beam communication (RBCom) system, where two separately deployed retroreflectors are adopted to generate the resonant beam between the transmitter and the receiver, and analyzes the transmission rate of the considered system under both the quasi-static and mobile scenarios. Part I of this paper focuses on the quasi-static scenario where the locations of the transmitter and the receiver are relatively fixed. Specifically, we propose a new information-bearing scheme which adopts a synchronization-based amplitude modulation method to mitigate the echo interference caused by the reflected resonant beam. With this scheme, we show that the quasi-static RBCom channel is equivalent to a Markov channel and can be further simplified as an amplitude-constrained additive white Gaussian noise channel. Moreover, we develop an algorithm that jointly employs the bisection and exhaustive search to maximize its capacity upper and lower bounds. Finally, numerical results validate our analysis. Part II of this paper discusses the performance of the RBCom system under the mobile scenario.

This work presents a new method to design consensus controllers for perturbed double integrator systems whose interconnection is described by a directed graph containing a rooted spanning tree. We propose new robust controllers to solve the consensus and synchronization problems when the systems are under the effects of matched and unmatched disturbances. In both problems, we present simple continuous controllers, whose integral actions allow us to handle the disturbances. A rigorous stability analysis based on Lyapunov's direct method for unperturbed networked systems is presented. To assess the performance of our result, a representative simulation study is presented.

Autonomous driving systems require extensive data collection schemes to cover the diverse scenarios needed for building a robust and safe system. The data volumes are in the order of Exabytes and have to be stored for a long period of time (i.e., more than 10 years of the vehicle's life cycle). Lossless compression doesn't provide sufficient compression ratios, hence, lossy video compression has been explored. It is essential to prove that lossy video compression artifacts do not impact the performance of the perception algorithms. However, there is limited work in this area to provide a solid conclusion. In particular, there is no such work for fisheye cameras, which have high radial distortion and where compression may have higher artifacts. Fisheye cameras are commonly used in automotive systems for 3D object detection task. In this work, we provide the first analysis of the impact of standard video compression codecs on wide FOV fisheye camera images. We demonstrate that the achievable compression with negligible impact depends on the dataset and temporal prediction of the video codec. We propose a radial distortion-aware zonal metric to evaluate the performance of artifacts in fisheye images. In addition, we present a novel method for estimating affine mode parameters of the latest VVC codec, and suggest some areas for improvement in video codecs for the application to fisheye imagery.

Many conventional statistical and machine learning methods face challenges when applied directly to high dimensional temporal observations. In recent decades, Functional Data Analysis (FDA) has gained widespread popularity as a framework for modeling and analyzing data that are, by their nature, functions in the domain of time. Although supervised classification has been extensively explored in recent decades within the FDA literature, ensemble learning of functional classifiers has only recently emerged as a topic of significant interest. Thus, the latter subject presents unexplored facets and challenges from various statistical perspectives. The focal point of this paper lies in the realm of ensemble learning for functional data and aims to show how different functional data representations can be used to train ensemble members and how base model predictions can be combined through majority voting. The so-called Functional Voting Classifier (FVC) is proposed to demonstrate how different functional representations leading to augmented diversity can increase predictive accuracy. Many real-world datasets from several domains are used to display that the FVC can significantly enhance performance compared to individual models. The framework presented provides a foundation for voting ensembles with functional data and can stimulate a highly encouraging line of research in the FDA context.

The management of mixed traffic that consists of robot vehicles (RVs) and human-driven vehicles (HVs) at complex intersections presents a multifaceted challenge. Traditional signal controls often struggle to adapt to dynamic traffic conditions and heterogeneous vehicle types. Recent advancements have turned to strategies based on reinforcement learning (RL), leveraging its model-free nature, real-time operation, and generalizability over different scenarios. We introduce a hierarchical RL framework to manage mixed traffic through precise longitudinal and lateral control of RVs. Our proposed hierarchical framework combines the state-of-the-art mixed traffic control algorithm as a high level decision maker to improve the performance and robustness of the whole system. Our experiments demonstrate that the framework can reduce the average waiting time by up to 54% compared to the state-of-the-art mixed traffic control method. When the RV penetration rate exceeds 60%, our technique consistently outperforms conventional traffic signal control programs in terms of the average waiting time for all vehicles at the intersection.

This work discusses the benefits of having multiple simulated environments with different degrees of realism for the development of algorithms in scenarios populated by autonomous nodes capable of communication and mobility. This approach aids the development experience and generates robust algorithms. It also proposes GrADyS-SIM NextGen as a solution that enables development on a single programming language and toolset over multiple environments with varying levels of realism. Finally, we illustrate the usefulness of this approach with a toy problem that makes use of the simulation framework, taking advantage of the proposed environments to iteratively develop a robust solution.

In federated learning, data heterogeneity significantly impacts performance. A typical solution involves segregating these parameters into shared and personalized components, a concept also relevant in multi-task learning. Addressing this, we propose "Loop Improvement" (LI), a novel method enhancing this separation and feature extraction without necessitating a central server or data interchange among participants. Our experiments reveal LI's superiority in several aspects: In personalized federated learning environments, LI consistently outperforms the advanced FedALA algorithm in accuracy across diverse scenarios. Additionally, LI's feature extractor closely matches the performance achieved when aggregating data from all clients. In global model contexts, employing LI with stacked personalized layers and an additional network also yields comparable results to combined client data scenarios. Furthermore, LI's adaptability extends to multi-task learning, streamlining the extraction of common features across tasks and obviating the need for simultaneous training. This approach not only enhances individual task performance but also achieves accuracy levels on par with classic multi-task learning methods where all tasks are trained simultaneously. LI integrates a loop topology with layer-wise and end-to-end training, compatible with various neural network models. This paper also delves into the theoretical underpinnings of LI's effectiveness, offering insights into its potential applications. The code is on //github.com/axedge1983/LI

We introduce CHARM, the first benchmark for comprehensively and in-depth evaluating the commonsense reasoning ability of large language models (LLMs) in Chinese, which covers both globally known and Chinese-specific commonsense. We evaluated 7 English and 12 Chinese-oriented LLMs on CHARM, employing 5 representative prompt strategies for improving LLMs' reasoning ability, such as Chain-of-Thought. Our findings indicate that the LLM's language orientation and the task's domain influence the effectiveness of the prompt strategy, which enriches previous research findings. We built closely-interconnected reasoning and memorization tasks, and found that some LLMs struggle with memorizing Chinese commonsense, affecting their reasoning ability, while others show differences in reasoning despite similar memorization performance. We also evaluated the LLMs' memorization-independent reasoning abilities and analyzed the typical errors. Our study precisely identified the LLMs' strengths and weaknesses, providing the clear direction for optimization. It can also serve as a reference for studies in other fields. We will release CHARM at //github.com/opendatalab/CHARM .

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司