亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition's width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth (sd). Here, sd is a bounded-depth analogue of cliquewidth, in the same way as td is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. Precisely, we prove that on $n$-vertex graphs equipped with a tree-model (a decomposition notion underlying sd) of depth $d$ and using $k$ labels, we can solve - Independent Set in time $2^{O(dk)}\cdot n^{O(1)}$ using $O(dk^2\log n)$ space; - Max Cut in time $n^{O(dk)}$ using $O(dk\log n)$ space; and - Dominating Set in time $2^{O(dk)}\cdot n^{O(1)}$ using $n^{O(1)}$ space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of IS the exponent of the parametric factor in the time complexity has to grow with $d$ if one wishes to keep the space complexity polynomial.

相關內容

Secure computation protocols combine inputs from involved parties to generate an output while keeping their inputs private. Private Set Intersection (PSI) is a secure computation protocol that allows two parties, who each hold a set of items, to learn the intersection of their sets without revealing anything else about the items. Private Intersection Sum (PIS) extends PSI when the two parties want to learn the cardinality of the intersection, as well as the sum of the associated integer values for each identifier in the intersection, but nothing more. Finally, Private Join and Compute (PJC) is a scalable extension of PIS protocol to help organizations work together with confidential data sets. The extensions proposed in this paper include: (a) extending PJC protocol to additional data columns and applying columnar aggregation based on supported homomorphic operations, (b) exploring Ring Learning with Errors (RLWE) homomorphic encryption schemes to apply arithmetic operations such as sum and sum of squares, (c) ensuring stronger security using mutual authentication of communicating parties using certificates, and (d) developing a Website to operationalize such a service offering. We applied our results to develop a Proof-of-Concept solution called JingBing, a voter list validation service that allows different states to register, acquire secure communication modules, install it, and then conduct authenticated peer-to-peer communication. We conclude our paper with directions for future research to make such a solution scalable for practical real-life scenarios.

With the rise of foundation models, a new artificial intelligence paradigm has emerged, by simply using general purpose foundation models with prompting to solve problems instead of training a separate machine learning model for each problem. Such models have been shown to have emergent properties of solving problems that they were not initially trained on. The studies for the effectiveness of such models are still quite limited. In this work, we widely study the capabilities of the ChatGPT models, namely GPT-4 and GPT-3.5, on 13 affective computing problems, namely aspect extraction, aspect polarity classification, opinion extraction, sentiment analysis, sentiment intensity ranking, emotions intensity ranking, suicide tendency detection, toxicity detection, well-being assessment, engagement measurement, personality assessment, sarcasm detection, and subjectivity detection. We introduce a framework to evaluate the ChatGPT models on regression-based problems, such as intensity ranking problems, by modelling them as pairwise ranking classification. We compare ChatGPT against more traditional NLP methods, such as end-to-end recurrent neural networks and transformers. The results demonstrate the emergent abilities of the ChatGPT models on a wide range of affective computing problems, where GPT-3.5 and especially GPT-4 have shown strong performance on many problems, particularly the ones related to sentiment, emotions, or toxicity. The ChatGPT models fell short for problems with implicit signals, such as engagement measurement and subjectivity detection.

It is shown that the psychometric test reliability, based on any true-score model with randomly sampled items and conditionally independent errors, converges to 1 as the test length goes to infinity, assuming some fairly general regularity conditions. The asymptotic rate of convergence is given by the Spearman-Brown formula, and for this it is not needed that the items are parallel, or latent unidimensional, or even finite dimensional. Simulations with the 2-parameter logistic item response theory model reveal that there can be a positive bias in the reliability of short multidimensional tests, meaning that applying the Spearman-Brown formula in these cases would lead to overprediction of the reliability that will result from lengthening the tests. For short unidimensional tests under the 2-parameter logistic model the reliabilities are almost unbiased, meaning that application of the Spearman-Brown formula in these cases leads to predictions that are approximately unbiased.

We study the problem of estimating the derivatives of a regression function, which has a wide range of applications as a key nonparametric functional of unknown functions. Standard analysis may be tailored to specific derivative orders, and parameter tuning remains a daunting challenge particularly for high-order derivatives. In this article, we propose a simple plug-in kernel ridge regression (KRR) estimator in nonparametric regression with random design that is broadly applicable for multi-dimensional support and arbitrary mixed-partial derivatives. We provide a non-asymptotic analysis to study the behavior of the proposed estimator in a unified manner that encompasses the regression function and its derivatives, leading to two error bounds for a general class of kernels under the strong $L_\infty$ norm. In a concrete example specialized to kernels with polynomially decaying eigenvalues, the proposed estimator recovers the minimax optimal rate up to a logarithmic factor for estimating derivatives of functions in H\"older and Sobolev classes. Interestingly, the proposed estimator achieves the optimal rate of convergence with the same choice of tuning parameter for any order of derivatives. Hence, the proposed estimator enjoys a \textit{plug-in property} for derivatives in that it automatically adapts to the order of derivatives to be estimated, enabling easy tuning in practice. Our simulation studies show favorable finite sample performance of the proposed method relative to several existing methods and corroborate the theoretical findings on its minimax optimality.

Activation functions are the linchpins of deep learning, profoundly influencing both the representational capacity and training dynamics of neural networks. They shape not only the nature of representations but also optimize convergence rates and enhance generalization potential. Appreciating this critical role, we present the Linear Oscillation (LoC) activation function, defined as $f(x) = x \times \sin(\alpha x + \beta)$. Distinct from conventional activation functions which primarily introduce non-linearity, LoC seamlessly blends linear trajectories with oscillatory deviations. The nomenclature ``Linear Oscillation'' is a nod to its unique attribute of infusing linear activations with harmonious oscillations, capturing the essence of the 'Importance of Confusion'. This concept of ``controlled confusion'' within network activations is posited to foster more robust learning, particularly in contexts that necessitate discerning subtle patterns. Our empirical studies reveal that, when integrated into diverse neural architectures, the LoC activation function consistently outperforms established counterparts like ReLU and Sigmoid. The stellar performance exhibited by the avant-garde Vision Transformer model using LoC further validates its efficacy. This study illuminates the remarkable benefits of the LoC over other prominent activation functions. It champions the notion that intermittently introducing deliberate complexity or ``confusion'' during training can spur more profound and nuanced learning. This accentuates the pivotal role of judiciously selected activation functions in shaping the future of neural network training.

Bregman proximal point algorithm (BPPA) has witnessed emerging machine learning applications, yet its theoretical understanding has been largely unexplored. We study the computational properties of BPPA through learning linear classifiers with separable data, and demonstrate provable algorithmic regularization of BPPA. For any BPPA instantiated with a fixed Bregman divergence, we provide a lower bound of the margin obtained by BPPA with respect to an arbitrarily chosen norm. The obtained margin lower bound differs from the maximal margin by a multiplicative factor, which inversely depends on the condition number of the distance-generating function measured in the dual norm. We show that the dependence on the condition number is tight, thus demonstrating the importance of divergence in affecting the quality of the learned classifiers. We then extend our findings to mirror descent, for which we establish similar connections between the margin and Bregman divergence, together with a non-asymptotic analysis. Numerical experiments on both synthetic and real-world datasets are provided to support our theoretical findings. To the best of our knowledge, the aforementioned findings appear to be new in the literature of algorithmic regularization.

Image segmentation and depth estimation are crucial tasks in computer vision, especially in autonomous driving scenarios. Although these tasks are typically addressed separately, we propose an innovative approach to combine them in our novel deep learning network, Panoptic-DepthLab. By incorporating an additional depth estimation branch into the segmentation network, it can predict the depth of each instance segment. Evaluating on Cityscape dataset, we demonstrate the effectiveness of our method in achieving high-quality segmentation results with depth and visualize it with a color map. Our proposed method demonstrates a new possibility of combining different tasks and networks to generate a more comprehensive image recognition result to facilitate the safety of autonomous driving vehicles.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

北京阿比特科技有限公司