Wayfinding in complex indoor environments is often challenging for older adults due to declines in navigational and spatial-cognition abilities. This paper introduces NavMarkAR, an augmented reality navigation system designed for smart-glasses to provide landmark-based guidance, aiming to enhance older adults' spatial navigation skills. This work addresses a significant gap in design research, with limited prior studies evaluating cognitive impacts of AR navigation systems. An initial usability test involved 6 participants, leading to prototype refinements, followed by a comprehensive study with 32 participants in a university setting. Results indicate improved wayfinding efficiency and cognitive map accuracy when using NavMarkAR. Future research will explore long-term cognitive skill retention with such navigational aids.
Content creators often aim to create personalized images using personal subjects that go beyond the capabilities of conventional text-to-image models. Additionally, they may want the resulting image to encompass a specific location, style, ambiance, and more. Existing personalization methods may compromise personalization ability or the alignment to complex textual prompts. This trade-off can impede the fulfillment of user prompts and subject fidelity. We propose a new approach focusing on personalization methods for a \emph{single} prompt to address this issue. We term our approach prompt-aligned personalization. While this may seem restrictive, our method excels in improving text alignment, enabling the creation of images with complex and intricate prompts, which may pose a challenge for current techniques. In particular, our method keeps the personalized model aligned with a target prompt using an additional score distillation sampling term. We demonstrate the versatility of our method in multi- and single-shot settings and further show that it can compose multiple subjects or use inspiration from reference images, such as artworks. We compare our approach quantitatively and qualitatively with existing baselines and state-of-the-art techniques.
The primary aim of Knowledge Graph embeddings (KGE) is to learn low-dimensional representations of entities and relations for predicting missing facts. While rotation-based methods like RotatE and QuatE perform well in KGE, they face two challenges: limited model flexibility requiring proportional increases in relation size with entity dimension, and difficulties in generalizing the model for higher-dimensional rotations. To address these issues, we introduce OrthogonalE, a novel KGE model employing matrices for entities and block-diagonal orthogonal matrices with Riemannian optimization for relations. This approach enhances the generality and flexibility of KGE models. The experimental results indicate that our new KGE model, OrthogonalE, is both general and flexible, significantly outperforming state-of-the-art KGE models while substantially reducing the number of relation parameters.
Internet of Things (IoT) and smart wearable devices for personalized healthcare will require storing and computing ever-increasing amounts of data. The key requirements for these devices are ultra-low-power, high-processing capabilities, autonomy at low cost, as well as reliability and accuracy to enable Green AI at the edge. Artificial Intelligence (AI) models, especially Bayesian Neural Networks (BayNNs) are resource-intensive and face challenges with traditional computing architectures due to the memory wall problem. Computing-in-Memory (CIM) with emerging resistive memories offers a solution by combining memory blocks and computing units for higher efficiency and lower power consumption. However, implementing BayNNs on CIM hardware, particularly with spintronic technologies, presents technical challenges due to variability and manufacturing defects. The NeuSPIN project aims to address these challenges through full-stack hardware and software co-design, developing novel algorithmic and circuit design approaches to enhance the performance, energy-efficiency and robustness of BayNNs on sprintronic-based CIM platforms.
Auditory spatial attention detection (ASAD) is used to determine the direction of a listener's attention to a speaker by analyzing her/his electroencephalographic (EEG) signals. This study aimed to further improve the performance of ASAD with a short decision window (i.e., <1 s) rather than with long decision windows in previous studies. An end-to-end temporal attention network (i.e., TAnet) was introduced in this work. TAnet employs a multi-head attention (MHA) mechanism, which can more effectively capture the interactions among time steps in collected EEG signals and efficiently assign corresponding weights to those EEG time steps. Experiments demonstrated that, compared with the CNN-based method and recent ASAD methods, TAnet provided improved decoding performance in the KUL dataset, with decoding accuracies of 92.4% (decision window 0.1 s), 94.9% (0.25 s), 95.1% (0.3 s), 95.4% (0.4 s), and 95.5% (0.5 s) with short decision windows (i.e., <1 s). As a new ASAD model with a short decision window, TAnet can potentially facilitate the design of EEG-controlled intelligent hearing aids and sound recognition systems.
Indexes are useful for summarizing multivariate information into single metrics for monitoring, communicating, and decision-making. While most work has focused on defining new indexes for specific purposes, more attention needs to be directed towards making it possible to understand index behavior in different data conditions, and to determine how their structure affects their values and variation in values. Here we discuss a modular data pipeline recommendation to assemble indexes. It is universally applicable to index computation and allows investigation of index behavior as part of the development procedure. One can compute indexes with different parameter choices, adjust steps in the index definition by adding, removing, and swapping them to experiment with various index designs, calculate uncertainty measures, and assess indexes robustness. The paper presents three examples to illustrate the pipeline framework usage: comparison of two different indexes designed to monitor the spatio-temporal distribution of drought in Queensland, Australia; the effect of dimension reduction choices on the Global Gender Gap Index (GGGI) on countries ranking; and how to calculate bootstrap confidence intervals for the Standardized Precipitation Index (SPI). The methods are supported by a new R package, called tidyindex.
Video-based heart and respiratory rate measurements using facial videos are more useful and user-friendly than traditional contact-based sensors. However, most of the current deep learning approaches require ground-truth pulse and respiratory waves for model training, which are expensive to collect. In this paper, we propose CalibrationPhys, a self-supervised video-based heart and respiratory rate measurement method that calibrates between multiple cameras. CalibrationPhys trains deep learning models without supervised labels by using facial videos captured simultaneously by multiple cameras. Contrastive learning is performed so that the pulse and respiratory waves predicted from the synchronized videos using multiple cameras are positive and those from different videos are negative. CalibrationPhys also improves the robustness of the models by means of a data augmentation technique and successfully leverages a pre-trained model for a particular camera. Experimental results utilizing two datasets demonstrate that CalibrationPhys outperforms state-of-the-art heart and respiratory rate measurement methods. Since we optimize camera-specific models using only videos from multiple cameras, our approach makes it easy to use arbitrary cameras for heart and respiratory rate measurements.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.