In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d:=\left\{ f\in L^2([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^d}|\hat{f}(\boldsymbol{k})| \max\left(1,\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right) <\infty \right\}\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$ and $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$ is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance $\varepsilon$ grows only polynomially with respect to $\varepsilon^{-1}$ and $d$. It is important to remark that the function space $F_d$ is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.
The aim of this paper is twofold. First, we prove $L^p$ estimates for a regularized Green's function in three dimensions. We then establish new estimates for the discrete Green's function and obtain some positivity results. In particular, we prove that the discrete Green's functions with singularity in the interior of the domain cannot be bounded uniformly with respect of the mesh parameter $h$. Actually, we show that at the singularity the discrete Green's function is of order $h^{-1}$, which is consistent with the behavior of the continuous Green's function. In addition, we also show that the discrete Green's function is positive and decays exponentially away from the singularity. We also provide numerically persistent negative values of the discrete Green's function on Delaunay meshes which then implies a discrete Harnack inequality cannot be established for unstructured finite element discretizations.
We consider the problem of identification of linear dynamical systems from a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm which depend on the local size of the tangent cone of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of this result, we instantiate it for the settings where, (i) $\mathcal{K}$ is a $d$ dimensional subspace of $\mathbb{R}^{n \times n}$, or (ii) $A^*$ is $k$-sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball. In the regimes where $d, k \ll n^2$, our bounds improve upon those obtained from the OLS estimator.
Incommensurate structures arise from stacking single layers of low-dimensional materials on top of one another with misalignment such as an in-plane twist in orientation. While these structures are of significant physical interest, they pose many theoretical challenges due to the loss of periodicity. In this paper, we characterize the density of states of Schr\"{o}dinger operators in the weak sense for the incommensurate system and develop novel numerical methods to approximate them. In particular, we (i) justify the thermodynamic limit of the density of states in the real space formulation; and (ii) propose efficient numerical schemes to evaluate the density of states based on planewave approximations and reciprocal space sampling. We present both rigorous analysis and numerical simulations to support the reliability and efficiency of our numerical algorithms.
Suppose we are given an $n$-dimensional order-3 symmetric tensor $T \in (\mathbb{R}^n)^{\otimes 3}$ that is the sum of $r$ random rank-1 terms. The problem of recovering the rank-1 components is possible in principle when $r \lesssim n^2$ but polynomial-time algorithms are only known in the regime $r \ll n^{3/2}$. Similar "statistical-computational gaps" occur in many high-dimensional inference tasks, and in recent years there has been a flurry of work on explaining the apparent computational hardness in these problems by proving lower bounds against restricted (yet powerful) models of computation such as statistical queries (SQ), sum-of-squares (SoS), and low-degree polynomials (LDP). However, no such prior work exists for tensor decomposition, largely because its hardness does not appear to be explained by a "planted versus null" testing problem. We consider a model for random order-3 tensor decomposition where one component is slightly larger in norm than the rest (to break symmetry), and the components are drawn uniformly from the hypercube. We resolve the computational complexity in the LDP model: $O(\log n)$-degree polynomial functions of the tensor entries can accurately estimate the largest component when $r \ll n^{3/2}$ but fail to do so when $r \gg n^{3/2}$. This provides rigorous evidence suggesting that the best known algorithms for tensor decomposition cannot be improved, at least by known approaches. A natural extension of the result holds for tensors of any fixed order $k \ge 3$, in which case the LDP threshold is $r \sim n^{k/2}$.
We present a study of a kernel-based two-sample test statistic related to the Maximum Mean Discrepancy (MMD) in the manifold data setting, assuming that high-dimensional observations are close to a low-dimensional manifold. We characterize the test level and power in relation to the kernel bandwidth, the number of samples, and the intrinsic dimensionality of the manifold. Specifically, we show that when data densities are supported on a $d$-dimensional sub-manifold $\mathcal{M}$ embedded in an $m$-dimensional space, the kernel two-sample test for data sampled from a pair of distributions $p$ and $q$ that are H\"older with order $\beta$ (up to 2) is powerful when the number of samples $n$ is large such that $\Delta_2 \gtrsim n^{- { 2 \beta/( d + 4 \beta ) }}$, where $\Delta_2$ is the squared $L^2$-divergence between $p$ and $q$ on manifold. We establish a lower bound on the test power for finite $n$ that is sufficiently large, where the kernel bandwidth parameter $\gamma$ scales as $n^{-1/(d+4\beta)}$. The analysis extends to cases where the manifold has a boundary, and the data samples contain high-dimensional additive noise. Our results indicate that the kernel two-sample test does not have a curse-of-dimensionality when the data lie on or near a low-dimensional manifold. We validate our theory and the properties of the kernel test for manifold data through a series of numerical experiments.
The aim of this paper is to provide a new estimator of parameters for LARCH$(\infty)$ processes, and thus also for LARCH$(p)$ or GLARCH$(p,q)$ processes. This estimator results from minimising a contrast leading to a least squares estimator for the absolute values of the process. Strong consistency and asymptotic normality are shown, and convergence occurs at the rate $\sqrt n$ as well in short or long memory cases. Numerical experiments confirm the theoretical results and show that this new estimator significantly outperforms the smoothed quasi-maximum likelihood estimators or weighted least squares estimators commonly used for such processes.
The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which become an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of the solution, we combine the compact operator with a tempered L1 approximation with nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditional stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.
In this paper, we consider a new approach for semi-discretization in time and spatial discretization of a class of semi-linear stochastic partial differential equations (SPDEs) with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz continuous. Our new strategy for time discretization is based on the Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of nearly $1$ for the approximate solution. The proof is based on new H\"older continuity estimates of the SPDE solution and the nonlinear term. For the general polynomial-type drift term, there are difficulties in deriving even the stability of the numerical solutions. We propose an interpolation-based finite element method for spatial discretization to overcome the difficulties. Then we obtain $H^1$ stability, higher moment $H^1$ stability, $L^2$ stability, and higher moment $L^2$ stability results using numerical and stochastic techniques. The nearly optimal convergence orders in time and space are hence obtained by coupling all previous results. Numerical experiments are presented to implement the proposed numerical scheme and to validate the theoretical results.
Informative cluster size (ICS) arises in situations with clustered data where a latent relationship exists between the number of participants in a cluster and the outcome measures. Although this phenomenon has been sporadically reported in statistical literature for nearly two decades now, further exploration is needed in certain statistical methodologies to avoid potentially misleading inferences. For inference about population quantities without covariates, inverse cluster size reweightings are often employed to adjust for ICS. Further, to study the effect of covariates on disease progression described by a multistate model, the pseudo-value regression technique has gained popularity in time-to-event data analysis. We seek to answer the question: "How to apply pseudo-value regression to clustered time-to-event data when cluster size is informative?" ICS adjustment by the reweighting method can be performed in two steps; estimation of marginal functions of the multistate model and fitting the estimating equations based on pseudo-value responses, leading to four possible strategies. We present theoretical arguments and thorough simulation experiments to ascertain the correct strategy for adjusting for ICS. A further extension of our methodology is implemented to include informativeness induced by the intra-cluster group size. We demonstrate the methods in two real-world applications: (i) to determine predictors of tooth survival in a periodontal study, and (ii) to identify indicators of ambulatory recovery in spinal cord injury patients who participated in locomotor-training rehabilitation.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.